specification & description language - real time

@® Graphical language to specify
and design real time and
embedded software

Date @ September 20th, 2021

Version ® 24

Reference ® http://www.sdl-rt.org ’

1

SIRT

SDL-RT V2.4

Introduction = ------cmcmm oo e 6
Architecture --------- oo e 8
Y £S 1 SR O RRR 8
0 < 1T 8
CommuNiCatioN - ------- - m oo oo 10
Behavior -----------mii e e 13
=1 USRS 13

S = (RSP SR 13
S 0] o 1SR 14
IMIESSAgE INPUL ...ttt ettt bbbt e e et et e b e bt sb e e be et e e e e e b e nbennenbenbeas 15
S S-2 o T o1 11 o | RS 16
Toaqueue ld 17

To aprocess name 17
To the environment 18
Viaachannel or agate 19
As abroadcast 21

S S2 o TS YRS 23
CONINUOUS SIGNELceeivieciieiie ettt b e s e e et e e saaeaabeeaaeeenseesseeenneesneeenseennnaens 24
o 1o o 25
D= of S Lo o RS PSPRURRR 25
SEMAPNOTE TAKE ...ttt b bbbttt e et b e nns 26
SEMAPNOIE GIVE.....eeeeiee ettt e bbb e bt bt st et e et e b e nns 27
0TS G = OO PRSP 27

B IS5 0] o TP USRS 27
IS Qe == 1 oo S 27
PrOCEAUIE Call ...ttt b et et e e sreenaeenea s 28
(O0 0] 07 ot (0] €TSS 28
TrANSITION OPLION ...ttt e bt st b et e e e e e e ne e 29
(001 01]107C o TR ORT P PRTRPRR 30
(= 1 o PP 31
0101 0 (01 LS = RS TSSR 31
PrOCEOUIE FBLUIM ...ttt sttt ettt ae e bt et s ae e sb e et e e bt e s beentesreenseennans 32
TEXE SYMDIOL ...t b et bbbttt et et st beneenne e 32
Additional heading SYMDOIcooiiiiie e 32
ODbject Creation SYMIOLcooiiiiiicce e s et e e nre e ssaeeraeens 33
Super class transition SYMDOL..........ocoiiie s 34
Super Class NEXE SEAE SYMIO.........coviiiiiriesee et se s 34
COMPOSITE SLALE......ccveeiteeeiee st cie e tee e te e e s e e ste e et e e sbe e e beesseeesteesseeeabeesseeenseesneeenseesneesnneens 35
Composite state definition 35
Composite state usage 36
Y01 070 K=Y o] 1 (= 1 1 o PRSP 38
Declarations----------ccmommmm et a e e 39
PIOCESS ...t b e b e e e hE e e R e e e e be e e e neeeare e e nnreennreeeas 39
ProCedure ECIaratioN............ooeiiiie et b et sreenre e 40

Page 2 Specification & Description Language - Real Time

- N TIRT.

SDL-RT defined procedure
C defined procedure

Y SR e e
AGENE INSIANCE....ctetiteee ettt ettt et et e b et b e s bt s bt e aeeaeese e e e e e eeseennenreas
SEMaPNOre FEPIESENTALIONeevie ittt e b st e e b e e b e e b e e beesneeereesnnas
Semaphore MaNIPUIBLIONSeiiieiieeiee e e et e sbe e e s e e sseeebeesreeenreesneas
IMESSAGE EXCIENGE.c.ee vttt ettt b e bt sb e bt et e s e e e e et e besbenbenns
SYNCAFONOUS CAlIS.....cceeeiiecte e e et e e e s e e e be e sreeeteenneas

L©0 1= o o o SRR
Y O = = o
INTINE EXPIESSIONS.......eiiieeciie ettt s e et e et e e s be e e be e sseesaae e beeaseeebeesaeeesseesneeennnennnaens
L= SRS 1. oo PR
(@0 071107 o | SRS SORR

Property Sequence ChartS (PSC).......uiiiiiieiieccie ettt sttt et st e e sneesnneens
Component instance
Normal, required and fail messages
Parallel, aternative and loop operator
Strict operator
Relative time constraint
Unwanted/wanted message or chain constraints
High-1eVEl MSC (HMSC) ..ottt sttt st sre e neene s

Datatypes - - - - - - s s m o e o e e e e e e e aa oo
Type definitioNS aNd NEAENS..........ooiiiie et nne s
RV = o=
O 111011] U
S = I 01101 10

Object orientation - - - --- == - - oo oo oo
= 0T Qo SRS
PIOCESS ClaSS......eeitecciee ettt s e s e st e et e e s bt e st e e saeeeabeesseeeabeesseesaseesseesaseesseesnseenneesnneens

Adding atransition
Overload atrangition
Abstract transition
Reference to the super class
Example
(O o (=T | = 4 USSP
Class
Speciadlisation
Association

Specification & Description Language - Real Time Page 3

TIRT

Aggregation 82
Composition 83

= 01 €= 0 [SRS 83
Usage in an agent 84
Usagein aclass diagram 84
Deployment diagram - - ------- - -mmm oo oo 85
N0 L= PSSR 85
1O 1101070] 1= o | APPSR 85
(@00 0101 o 1 [0 o SRR 86
D= o< 116 (= 0oy TS RPN 87

F 0 0= o= (0] ISP 88
Node and coOmMPONENES TAENLITIENS.........ieiii i 88
Symbolscontained indiagrams - -------------------- - 89
Textual representation - -------- - - oo 90
CommON XML defiNITIONS.cc.eiiieieee et 90
XML elements for standard diagrams..........cooceeierireneneneneee e e 91
Principles 91
XML elements 92
Explanations 94
Behavioral diagramsScooiiiiiiie e e 94
Principles 94
XML elements 95
Explanations 97
MSC AIagram DTD ...ttt bbbt sttt et et e b et saenbenne s 99
Principles 99
DTD text 99
Explanations 100
Examplesystems ----------------- oo 104
T o T 0] 1 SR 104
A global variable ManiPUIBLION..........coireiiiiese e e 107
ACCESS CONLIOI SYSIEIM ...ttt b e bbbt e e et se b b nns 110
Requirements 110
Analysis 111
Architecture 112
pCentral process 112
getCardNCode procedure 114
pLocal process 115
Display procedure 119
DisplayStar procedure 119
Deployment 120
Differenceswith classical SDL - -----------mmmmmmm oo 121
Dz 6 1Y 0P 121
SEMAPINOTES ...ttt b bbbttt et e e b e bt bt be ettt e e nnenae s 121
T 1SR 121

Page 4 Specification & Description Language - Real Time

- N TIRT.

INBITIES. ...ttt e e et e m e e e e R e e e n e e ame e e e e e aRe e ean e e e Re e e n e e e Re e e n e e nneennnennnn 121
(@ o= oo 101 = 1 o o PSSR 121
Memory management - - - -------- - oo oo 123
GlODEl VAITADIES..........oieeee e b 123
M ESSA0E PAIAIMELENSeeiuveieiiieesiee ettt e e e e st e st e e st e e sat e e e st e e e seeeeaseeessbeeessbeeenseeesbaeesnneeennneenans 123
Keywords --------cmmmm i e oo e 124
Y G e 125
Naming CoNVeNtion - - - - - - - - - - - - - - oo oo oo oo 126
Lexical rules - ------ - oo i e e e e 127
(€1 [e= = A e 128
Modificationsfrom previousreleases - - - - - - - -------------ooo oo 129
RV 0 0 Y O P TRST P PP PP 129
RV Nt 0 Y TSSO PT PP 129
VL 2T0 V2.0t bRt r e r e e n e 129
V2. 0T0 V2.6t r e E bRt r e r e 129
V2.1 H0 V2.2t et bbb bt bRttt e bbb b e ne e 129
V2. 210V 2.3 R Rt r e r e ne e 130
V2. BTO V24 b e e b et r e nn e 130
F0 [G e I T 131

Specification & Description Language - Real Time Page 5

TIRT

1 - Introduction

As its name states, SDL-RT is based on SDL standard from ITU extended with real time con-
cepts. V2.0 has introduced support of UML from OMG in order to extend SDL-RT usage to static
part of the embedded software and distributed systems.

SDL has been developed in the first place to specify telecommunication protocols but experience
showed some of its basic principles could be used in a wide variety of real time and embedded
systems. Its main benefits are:

 architecture definition,

e graphica finite state machine,

» object orientation.

But SDL was not meant to design real time systems and some major drawbacks prevented it to be
widely used in the industry:

* Obsolete data types,

« old fashioned syntax,

* NO pointer concept,

e no semaphore concept.

SDL being a graphical language it is obviously not suited for any type of coding. Some parts of
the application still need to be written in C or assembly language. Furthermore legacy code or off
the shelf libraries such as RTOS, protocol stacks, drivers have C APIs. Last but not least thereis
no SDL compilers so SDL need to be translated into C code to get down to target. So all SDL ben-
efitsare lost when it comesto real coding and integration with real hardware and software.

Considering the above considerations a real time extension to SDL needed to be defined that
would keep the benefits of SDL and solve its weaknesses. The simpler the better ! SDL-RT was
born based on 2 basic principles:

* Replace SDL datatypesby C,

* Add semaphore support in the behavior diagrams.

UML diagrams have been added to SDL-RT V2.0 to extend SDL-RT application field:

* When it comes to object orientation, UML class diagram brings a perfect graphical rep-
resentation of the classes organisation and relations. Dynamic classes represent SDL
agents and static classes represent C++ classes.

e To handle distributed systems, UML deployment diagram offers a graphical representa-
tion of the physical architecture and how the different nodes communicate with each
other.

Page 6 Specification & Description Language - Real Time

SDL-RT V24

Theresult, SDL-RT, isa

simpler,

object oriented,

graphical language,

combining dynamic and static representations,
supporting classical real time concepts,
extended to distributed systems,

based on standard languages.

Specification & Description Language - Real Time

Page 7

TIRT

2 - Architecture

2.1 - System

The overall design is called the system and everything that is outside the system is called the
environment. Thereisno specific graphical representation for the system but the block represen-
tation can be used if needed.

2.2 - Agents

An agent is an element in the system structure. There are two kinds of agents: blocks and proc-
esses. A system is the outermost block.

A block isastructuring element that does not imply any physical implementation on the target. A
block can be further decomposed in blocks and so on alowing to handle large systems. A block
symbol isasolid rectangle with its namein it:

MyBlock

A simple block exampl e.

When the SDL-RT system is decomposed down to the simplest block, the way the block fulfilsits
functionality is described with processes. A lowest level block can be composed of one or severd
processes. To avoid having blocks with only one processit is alowed to mix together blocks and
processes at the same level e.g. in the same block.

A process symbol is arectangle with cut corners with its namein it:

A simple process example.

A process is basically the code that will be executed. It is a finite state machine based task (Cf.
“Behavior” on page 13) and has an implicit message queue to receive messages. It is possible to
have several instances of the same process running independently. The number of instances
present when the system starts and the maximum number of instances are declared between
parenthesis after the name of the process. The full syntax in the process symboal is:

<process name> [(<number of instances at startups>, <maximum number of instancess)]

If omitted default values are 1 for the number of instances at startup and infinite for the maximum
number of instances.

Page 8 Specification & Description Language - Real Time

SDL-RT V24

TIRT

MyProcess(0,10) ’

An exampl e process that has no instance at startup and a maximum of 10 instances.

The overall architecture can be seen as a tree where the leaves are the processes.

MySystem
blockA blockB
processA 1l ’ ‘proc&ssAZ(O,lO)’ blockC ‘procassBl(l,l)’
‘ processC1 ’ ‘ processC2 ’ ‘ processC3 ’

A view of the architecture tree

When viewing a block, depending on the size of the system, it is more comfortable to only repre-

sent the current block level without the lower agents.

Specification & Description Language - Real Time

Page 9

TIRT

3 - Communication

SDL-RT isevent driven, meaning communication is based on message exchanges. A message has
a name and a parameter that is basicaly a pointer to some data. Messages go through channels
that connect agents and end up in the processes implicit queues.

Channels have names and are represented by a one-way or two-ways arrows. A channel name is
written next to the arrow without any specific delimiter. The list of messages going in a specific
way are listed next to the arrow between brackets and separated by commas. Messages can be
gathered in message lists, to indicate a message list in the list of messages going through a chan-
nel the message list is surrounded by parenthesis. Note the same message can be listed in both
directions.

channelName
. >
aOneWayChannel example: [messagel.,
(messagel.istl),
message?]
channelName
aTwoWayChannel example: - >
[messaged, [messagel,
messages, message2,
message?] (messageL.istl)]

Channels end points can be connected to: the environment, another channel or a process. Graphi-
cally a channel can be connected to a block but it is actually connected to another channel inside
the block. To represent the outside channels connected to the block at the upper architecture level,
a block view is surrounded by a frame representing the edge of the block. The upper level chan-
nels connected to the block are then represented outside the frame and channels inside the block
can be connected to these upper level channels. Note a channel can be connected to several chan-
nels. In any case consistency is kept between levels e.g. all messagesin a channel arelisted in the
upper or lower level channels connected to it.

Page 10 Specification & Description Language - Real Time

TIRT

SDL-RT V2.4
Example:
Let us consider an SDL-RT system made of two blocks: blockA and blockB.
mySystem A [messages,
message9)]
chEnvB
Y [message7]
chEnvA chAB
p| DIOCkA | g p| DblockB
[messagel, [messaged] [messageb,
message2, messaged]
message3]

An example system view

The channels chenva and chEnve are connected to the surrounding frame of the system mysys-
tem. They define communication with the environment, e.g. the interface of the system. chenva
and chaB are connected to b1ocka and define the messages coming in or going out of the block.

chEnvA

chAB
blockA A [message5
messages]
chABD
Y [messaged]
ChEWAC | blockc | P | blockp
[messagel, [messaged, [messageb,
message2, messagel0, messagel2,
message3)] messagell] messagel3]

[messagel4]

An inner block view

The inner view of block blockA showsit is made of the blocks blockC and blockD and of the pro-
cess processk. chEnvAC is connected to the upper level channel chEnvA and chABD is connected

Specification & Description Language - Real Time

Page 11

TIRT

to the upper channel chAB. The flow of messages is consistent between levels since for example
the messages coming in block blockA through chEnvA (messagel, message2, message3) are aso
listed in chEnvAC.

Page 12 Specification & Description Language - Real Time

- N TIRT.

4 - Behavior

First of all a process has an implicit message queue to receive the messages listed in the channels.
A process description is based on an extended finite state machine. A process state determines
which behavior the process will have when receiving a specific stimulation. A transition is the
code between two states. The process can be hanging on its message queue or a semaphore or run-
ning e.g. executing code.

SDL-RT processes run concurrently; depending on the underlying RTOS and sometimes on the
target hardware the behavior might be sightly different. But messages and semaphores are there
to handle process synchronization so the final behavior should be independent of the RTOS and of
the hardware. Since SDL-RT isopen to any C code it is up to the designer to make sure this state-
ment stays true !

Note that in a state diagram the previous statement is a\ways connected to the symbol upper frame
and the next statement is connected to the lower frame or on the side.

4.1 - Sart

The start symbol represent the starting point for the execution of the process:

D

Sart symbol

The transition between the Start symbol and the first state of the process is called the start transi-
tion. This transition is the first thing the process will do when started. During this initialization
phase the process can not receive messages. All other symbols are allowed.

4.2 - Sate

The name of the process state is written in the state symbol:

< <state name> >

Sate symbol

The state symbol means the process is waiting for some input to go on, the allowed symbols to
follow a state symbol are:
* message input
the message could be coming from an external channel, or it could be a timer message
started by the processitself.
* continuous signal

Specification & Description Language - Real Time Page 13

TIRT

when reaching a state with continuous signals, the expressions in the continuous signals
are evaluated following the defined priorities. All continuous signal expressions are eval-
uated before the message input !
* save
the incoming message can not be treated in the current process state. It is saved until the
process state changes. When the process state has changed the saved messages are
treated first (before any other messages in the queue but after continuous signals).
Some trangitions can be valid for several states, the different state names are then listed separated
by acomma. A star ('*’) means all states.

Examples:
. idle,
idle * .
maintenance
I
| | |
msgl msg2 msgl <i% > §:>
In state idle msgl can be Message msg1 can In states id1e and
received and msg2 is saved. be received in any maintenance the
state expression a>o is
first evaluated.

A processin aspecific state can receive several types of messages or treat several continuous sig-
nals. To represent such a situation it is possible to have several message inputs connected to the
state or to split the state in several symbols with the same name.

Examples:

(idle) idle idle

| < >
sigl sig2 f sigl f sigl f

Two ways of writing in state idle,
sigl Or sig2 can bereceived.

4.3 - 3op
A process can terminate itself with the stop symbol.

Page 14 Specification & Description Language - Real Time

- N TIRT.
X

Sop symbol

Note a process can not kill another process, it can only kill itself.
Thereis no syntax for that symbol.

4.4 - Message input

The message input symbol represent the type of message that is expected in an SDL-RT state. It
alwaysfollows an SDL-RT state symbol and if received the symbols following the input are exe-
cuted.

<Message name>
[(<parameter
{, <parameters}*)

Message input symbol

An input has a name and can come with parameters. To receive the parameters it is necessary to
declare the variables that will be assigned to the parameters values in accordance with the mes-
sage definition.

The syntax in the message input symbol is the following:

<Message name> [(<parameter name> {, <parameter name>}*)]

<parameter names iSavariable that needsto be declared.

If the parameter type is undeclared it is still possible to transmit unstructured data with the param-
eter length and a pointer on the data.

If the parameter length is unknown, because the parameters are unstructured data, it is also possi-
ble to get the parameter length assigned to a pre-declared variable.

<Message name>
[(<data lengths>,
<pointer on data>)

Message with undeclared parameters

The syntax in the message input symbol is the following:

<Message name> [(<data length>, <pointer on data>)]

<data lengths> iSavariable that needsto be declared as a1ong.
<pointer on datas iSavariablethat needsto be declared as an unsigned char *.

Specification & Description Language - Real Time Page 15

TIRT

MESSAGE \
|
|

| ConReq (myStruct *, int, char),
ConConf,

myStruct *pData;

int myInt;

char myChar;

long myDataLength;
unsigned char *myData;

ConReqg
(pData,
myInt,
myChar)

DisReq
ConConf (myDataLength,
pData)

4.5 - M essage output

A message output is used to exchange information. It puts data in the receiver’s message queue in
an asynchronous way.

Message output symbol

When a message has parameters, user defined local variables are used to assign the parameters.
General syntax in the output symbol is:

<message names [(<parameter values> {,<parameter values}*)] TO XXX...

If the parameter is undefined the length of data and a pointer on the data can be provided. In that
case, the symbol syntax is:
<message name> [(<data length>, <pointer on data>)] TO XXX...

The syntax in the message output symbol can be written in several ways depending if the queue ld
or the name of the receiver is known or not. A message can be sent to a queue Id or to a process
name or via a channel or a gate. When communicating with the environment, a special syntax is
provided.

Page 16 Specification & Description Language - Real Time

SDL-RT V24 SDL

451 Toaqueueld

<Message name>

[(<parameter value>
{,<parameter values) }*]
ITo_ID

<receiver queue id>

Message output to a gueue id

The symbol syntax is:
<message name>[(<parameter value> {,<parameter value>}*)] TO ID <receiver
gueue id>

It can take the value given by the SDL-RT keywords:

PARENT The queue id of the parent process.
SELF The queue id of the current process.
OFFSPRING The queue id of the last created process if any or NULL if none.
SENDER The queue id of the sender of the last received message.
Examples:
r--— - - - - - - - - - — — — R
MESSAGE \
ConReqg (aStruct *, int), |
ConConf,
DisReq;
_______________ J
aStruct *myStruct;
int myInt;
long myDataLength;
unsigned char *pData;
ConReq DisReq
(myStruct, myInt) conConf TO_ID . (myDataLength,
TO ID PARENT aCalculatedReceive pData) TO ID

ConReq take 2 parame- There is no parameter DisReq parameter is
ters. A pointer on associated with the undefined. Length of
astruct and an int. message conConf. data and pointer on data
are given.

4.5.2 To a process name

<Message name>

[(<parameter value>
{,<parameter values)}*]
[TO_NAME

<receiver name>

Message output to a process name

The syntax is:

Specification & Description Language - Real Time Page 17

TIRT

<message name> [(<parameter value> {,<parameter value>}*)] TO NAME <receiver
name>
<receiver names ISthe name of a process if unique or it can be exv when simulating and the

message is sent out of the SDL system.

Examples.
ConReq ConConf
(myStruct, myInt) TO NAME
TO_NAME ENV receiverProcess
Note:

If several instances have the same process name (several instances of the same process for exam-
ple), the ' TO_NAME’ will send the message to the first created process with the corresponding
name. Therefore this method should no be used when the process name is not unique within the
system.

45.3 To the environment

<Message namex>

[(<parameter value>
{,<parameter values) }*]
[TO_ENV

<C macro name>

Message output to environment

The symbol syntax is:
<message name> [(<parameter value> {,<parameter value>}*)] TO ENV [<C macro
name>]
<C macro name> iSthe name of the macro that will be called when this SDL output symbol is hit.
The macro will take 3 parameters:

* name of message,

 length of a C struct that contains all parameters,

e pointer on the C struct containing all parameters.
Thefields of the implicit C struct will have the same type as the types defined for the message.

If no macro is declared the message will be sent to the environment.

Page 18 Specification & Description Language - Real Time

SDL-RT V24 SDL

Example:
-r- - - - - - - - - - - — — — N
MESSAGE A
| ConReqg(aStruct *, int, char);
Lo .
ConReq ConReq
(myStruct, mylnt, (myStruct, myIn
myChar) TO ENV myChar) TO_ENV
- ESSAGE_TO HDLC

In this second exampl e the generated code will be:
MESSAGE _TO_HDLC (ConReq, implicitC-
StructLength, implicitCStructPointer)
The implicit C struct will have the following definition:
typedef struct implicitCStruct
aStruct*paraml,
int param2;
char param3;
} implicitCStruct;
That alows to re-use the same macro with different types of

messages.

Note:
The implicit C struct memory space isimplictly allocated and it is the C macro responsability to
ensureit will be freed at some point.

4.5.4 Viaachannel or agate
A message can be sent via a channel in the case of a process or via a gate in the case of a process
class.

<Message name>

[(<parameter value>
{,<parameter values) }*]
VIA

<channel or gate names

Message output via a channel or a gate

The symbol syntax is:

<message name> [(<parameter value> {,<parameter value>}*)] VIA <channel or gate
name>

<channel or gate name> iSthe name of the channel or gate the message will go through.

This concept is especially usefull when using object orientation since classes are not supposed to
know their environment; so messages are sent via the gates that will be connected to the surroud-
ing environment when instanciated.

Specification & Description Language - Real Time Page 19

SDL-RT V2.4

Examples.
mySystem A [message?]
chEnvB
v [messaged]
chEnvA chAB
[messagel] [message?] [message3]- - .
-~ - l
e I
- |
- - |
Phe |
Phd |
- - |
-7 I
P |
Phe |
- - I
i I
e |
message2 message2 '
VIA [TO_NAME
chaR [processA

With the architecture defined above, both outputs are equivalent.

Page 20

Specification & Description Language - Real Time

SDL-RT V24 SDL

‘ myProcess |
[msg2]
cInternal
;" gate2 N

\
|
|

cUpperLevel I
|
upperLevelChannel p-@ Jatel I
[msgl] X !
AN /7
s/ ST —-=-—-=-=-—-—=-7 /
4 /
Y /
/ /

myGate2

o« @ stable
[msg2]

aProcess SENdSmsg2 t0 myProcess Without knowing its name nor its PID

455 Asa broadcast

A message can be sent to all possible receivers at once with the broadcast. There are two typical
situations: either there are several instances of the same process that can receive the message, or

Specification & Description Language - Real Time Page 21

SDL

SDL-RT V2.4

there are several processes connected via a channel that can carry the message. In thefirst casethe
TO_ALL keyword is used:

The symbol syntax is:

<Message name>

[(<parameter value>
{,<parameter values) }*]
TO_ALL

<process name>

Message broadcast to all instances of a process

<message name> [(<parameter value> {,<parameter value>}*)] TO ALL <process name>
<process name> iSthe hame of the receiver process that may have several instances.

This concept is especially useful when some messages are to be received by all instances of the
same process. It avoids having to store all active pids and to loop on the message output.

Examples.
mySystem A [message?]
chEnvB
messaged
chEnvA chAB V [|
[messagel] [message2] [messaged]- -

message2
TO_ALL
processA

1
|
|
|
|
Il
|
|
- |
|
|
|
|
|
|
'

message2
[TO_NAME
processA

The broadcast can also be based on the channel connexion.

<Message name>

[(<parameter value>
{,<parameter values>)}*]
TO_ALL VIA

<channel or gate name

Message broadcast to all possible receivers at the end of the channel path

Page 22

Specification & Description Language - Real Time

SDL-RT V24

TIRT

The symbol syntax is:

<message names [(<parameter value> {,<parameter value>}*)]

TO ALL VIA <chan-

nel or gate names
<channel or gate name> iSthe name of the channel or of the gate that carries the messsage.
All possible receivers at the end of the channel path will receive a copy of the message.

Examples:

mySystem

blockA

\ “'\\\\\\\\\\\lfzi‘blOCkC:
T~ chAC m]
\

blockB

4.6 - Message save

ml
TO_ALL VIA
chBC

TO_ID
processBid

_F

1
To_ID
processCid

A process may have intermediate states that can not deal with new request until the on-going job
is done. These new requests should not be lost but kept until the process reaches a stable state.
Save concept has been made for that matter, it basically holds the message until it can be treated.

<Message name>

Save symbol

Specification & Description Language - Real Time

Page 23

TIRT

The Save symbol is followed by no symbol. When the process changes to a new state the saved
messages will be the first to be treated (after continuous signals if any).

The symbol syntax is:

<message name>

Even if the message has parameters.

Example:
‘IIHHEEI" ‘IH%HHEI’
I I |
msgl msg2 msg3 msg3 msgl

(l) (staLle > (stable) (staLle >

Let’'sconsider the above pro- msg3, msg2, msgl. msg3 Will Since msg3 has been saved it
cessin state inter toreceive be saved, msg2 will makethe will first be treated and
the following messages. process go to state stable. finaly msgi.

4.7 - Continuous signal

A continuous signal is an expression that is evaluated right after a process reaches a new state. It
is evaluated before any message input or saved messages.

<condition
expression>

Continuous signal symbol

The continuous signal expression to evaluate can contain any standard C expression that returns a
C true/false expression. Since an SDL state can contain several continuous signal a priority level
needs to be defined with the pr10 keyword. Lower values correspond to higher priorities. A con-
tinuous signal symbol can be followed by any other symbol except another continuous signal or a
message input. The syntax is:

<C condition expressions

PRIO <priority levels

Page 24 Specification & Description Language - Real Time

- N TIRT.

Example:

< idle >
I
msgl < < a>5 > <(b<10) |l (cx(>
PRIO 2 PRIO 1

In the above example, when the process gets evaluate expression - - s. If the expression is
in state idle it will first evaluate expression not true or if the process stayed in the same
(b<10) || (cr=0). If the expressionisnot trueor stateit will execute msg1 transition.

if the process stayed in the same state it will

4.8 - Action

An action symbol contains a set of instructionsin C code. The syntax is the one of C language.

Example:

* Say hi to your friend *
printf ("Hello world !\n");
for (i=0;1<MAX;i++)

{

newString[i] = oldString[il]

}

4.9 - Decision

A decision symbol can be seen asa C switch / case.

or

Decision symbols

Sinceit isgraphical and therefore uses quite some space on the diagram it is recommended to use
it when its result modifies the resulting process state. The decision symbol is a diamond with
branches. Since adiamond is one of the worst shape to put text in it, it can be a"diamonded"” rect-
angle. Each branch can be seen as a case of the switch.

The expression to evaluate in the symbol can contain:

Specification & Description Language - Real Time Page 25

TIRT

» any standard C expression that returns a C true/false expression,
e anexpression that will be evaluated against the valuesin the decision branches.
The values of the branches have keyword expressions such as:

L] — —_ [—
>, <, >=, <=, =, ==

e true, false, else
The e1se branch contains the default branch if no other branch made it.

Examples:.

myValue

bvalue

true false else else < 2

Il
1]
)

4.10 - Semaphoretake
The Semaphore take symbol is used when the process attempts to take a semaphore.

[<status> =]
<semaphore names>
(<timeout options)

Semaphore take symbol
To take a semaphore, the syntax in the ‘ semaphore take SDL-RT graphical symbol’ is:

[<status> =] <semaphore name>(<timeout options)
where <timeout options IS:
e FOREVER
Hangs on the semaphore forever if not available.
e NO_ WAIT
Does not hang on the semaphore at al if not available.
e <number of ticks to wait fors
Hangs on the semaphore the specified number of ticksif not available.
and <statuss IS
e OK
If the semaphore has been successfully taken
e ERROR

Page 26 Specification & Description Language - Real Time

- N TIRT.

If the semaphore was not found or if the take attempt timed out.

4.11 - Semaphore give

<semaphore names>

Semaphore give symbol
To give a semaphore, the syntax in the ‘ semaphore give SDL-RT graphical symbol’ is:

<semaphore names>

4.12 - Timer start

<timer name>
(<time out wvalue
in tick counts>)

Timer start symbol

To start atimer the syntax in the *start timer SDL-RT graphical symbol’ is:
<timer name>(<time value in tick countss)
<time value in tick countss>isusualy an‘int’ butis RTOS and target dependant.

4.13 - Timer stop

<timer name>

Timer stop symbol

To cancel atimer the syntax in the *cancel timer SDL-RT graphical symbol’ is:

<timer name>

4.14 - Task creation

<process name>
[:<process class>]
[PRIO <prioritys>]

Task creation symbol

Specification & Description Language - Real Time Page 27

TIRT

To create a process the syntax in the create process symbol is:
<process name> [:<process class>] [PRIO <priority>]
to create one instance of <process class> hamed <process name> With priority <prioritys.

Examples.

anotherProcess:

myProcess
myProcess aClassOfProcess

PRIO 80

4.15 - Procedure call

[<return variable> =]
<procedure name>
({<parameters>}*) ;

Procedure call symbol

The procedure call symbol is used to call an SDL-RT procedure (Cf. “Procedure declaration” on
page 40). Sinceit is possible to call any C function in an SDL-RT action symbol it isimportant to
note SDL-RT procedures are different because they know the calling process context, e.g. SDL-
RT keywords such as SENDER, OFFSPRING, PARENT are the ones of the calling process.

The syntax in the procedure call SDL graphical symbol is the standard C syntax:

[<return variables> =] <procedure name> ({<parameterss>}¥*);
Examples.
myResult =
myProcedure anotherProcedure () ;
(myParameter) ;

4.16 - Connectors

<connector name> <connector name>

Connector out Connector in

Page 28 Specification & Description Language - Real Time

- N TIRT.

Connectors are used to:
» gplit atransition into several pieces so that the diagram stays legible and printable,
 to gather different branches to a same point.
A connector-out symbol has a name that relates to a connector-in. The flow of execution goes
from the connector out to the connector in symbol.
A connector contains a name that has to be unique in the process. The syntax is:
<connector name>

Examples:

printf ("Hello ") ; myLabel

V_____
N
- — — —

myLabel
printf ("world !\n");

4.17 - Transition option

Transition options are similar to C #ifdef.

Transition option symbol

The branches of the symbol have values true or false. The true branch is defined when the
expression is defined so the equivalent C codeis:

#ifdef <expressions>

The branches can stay separated to the end of the transition or they can meet again and close the
option aswould do an #endif.

Specification & Description Language - Real Time Page 29

TIRT

DEBUG
true false
a = 2; a = 2;
b = 3; b = 3;
myLogFunction(a,b) ;
EXTEND
true false
a = 2; a = 4;
b = 31 b = 4,'
c = 4; c = 10;
idle maintenance

4.18 - Comment

The comment symbol allows to write any type of informal text and connect it to the desired sym-
bol. If needed the comment symbol can be left unconnected.

| Free text to
—| comment a con-
| nected symbol.

Comment symbol

Page 30 Specification & Description Language - Real Time

SDL-RT V2.4
Example:
idle
mgéi_i;aiééze;_
msgl the system is

4.19 - Extension

ready.

The extension symbol is used to complete an expression in asymbol. The expression in the exten-
sion symbol is considered part of the expression in the connected symbol. Therefore the syntax is
the one of the connected symbol.

Example:

ConReq

<connected
— symbol
syntax>

Extension symbol

(myDataLength,
myData)

TO_ENV
MESSAGE_TO HDLC

isequivalent to:

ConReqg
(myDataLength,
[TO_ENV
ESSAGE_TO_ HDLC

myDats)

4.20 - Procedure start

This symbol is specific to a procedure diagram. It indicates the procedure entry point.

Specification & Description Language - Real Time

Page 31

TIRT

Procedure start symbol

There is no syntax associated with this symbol.

4.21 - Procedurereturn

This symbol is specific to a procedure diagram. It indicates the end of the procedure.

<i§%§i> [<return value>]

Procedure return symbol

This symbol is specific to a procedure diagram. It indicates the end of the procedure. If the proce-
dure has areturn value it should be placed by the symbol.

4.22 - Text symbol
This symbol isused to declare C types variables.

<any C language instructions >

Text symbol
The syntax is C language syntax.

4.23 - Additional heading symbol
This symbol is used to declare SDL-RT specific headings.

Additional heading symbol

It has a specific syntax depending in which diagram it is used.
» Block heading
Allows to declare messages and messages lists:

Page 32 Specification & Description Language - Real Time

- {SDL

MESSAGE <message name> [(<param type>)] {,<msg name> [(<param type>)]};
MESSAGE LIST <message list name> = <message name> {,<message name>}*;
» Process class heading
Allows to specify the superclass to inherit from:
INHERITS <superclass name>;
» System, Block, Block class heading
Allows to specify the package to use:
USE <package names>;
* Process or Process class heading
Allows to define the stack size:
STACK <stack size value>;

4.24 - Object creation symbol

<object name>:<class name>({ <parameter>} *)

Thisisequivaent to creating an instance of class <class name> hamed <object names.
This symbol can be used by tools to check consistency between the dynamic SDL view and the
static UML view.

Examples:

myObject:MyClass (12, "foo") ;

myObject = new MyClass (12, "foo");

Specification & Description Language - Real Time Page 33

TIRT

myProcess

)

I foo:MyClass(...)

foo 1

MyClass myProcess start

transition

The relation described in the class diagram implies the instance of mycilass
named after role name £oo must be created in the start transition.

4.25 - Super classtransition symbol

This symbol isused to call the corresponding super classtransition. It can be used anywherein the
transition between the “Message input” symbol and the next “ State” symbol. The sub class transi-
tion signature must be exactly the same as the super classtransition signature including the variale
names. More explanations in “Object orientation” on page 67.

4.26 - Super class next state symbol

This symbol is used to set the next state to the one of the super class. It replaces the standard
“State” symbol at the end of atransition. More explanations in * Object orientation” on page 67.

ZaN

Page 34 Specification & Description Language - Real Time

- NTIRT.

4.27 - Composite state

4.27.1 Composite state definition

A composite state is a state composed of sub finite state machines. Each sub-fsm handles a differ-
ent subset of messages. The super-fsm also handles its own inputs. When a message is for one of
the sub-fsm the super-state does not change. But when a message is for the super-fsm all sub-fsm
are terminated.

<composite state
< n%me> > Composite state definition symbol
<sub fsm name> Sub fsm definition symbol

The Sub-fsm definition symbols are connected to channels. Each message is routed to a specific
sub-fsm, the same message can not be received by two different sub-fsm.
The definition is done as described below:

Specification & Description Language - Real Time Page 35

TIRT

MyCompState

L
[messages|]

This mecanism is currently known as "state hierarchy" in UML or "services' in SDL.

4.27.2 Composite state usage
A dashed state symbol is used to indicate the fsm is getting into a composite state.

Page 36 Specification & Description Language - Real Time

- N TIRT.

................

MyMessage <

................

idle

When in the composite state mycompstate, messages are routed toward the corresponding sub-
fsm. When recelving the mymessage message, the sub-fsm are terminated and the super fsm tran-

sition is executed. If the same message can be received by the super fsm and by one of the sub
fsm, the super fsm transition has priority.

Specification & Description Language - Real Time Page 37

SDL SDL-RT V2.4

4.28 - Symbolsordering

The following table shows which symbols can be connected to a specific symbol.

i (U]
Thesymbolln 5 |7
this column can = = |3

c oo 5 c 2 |
be followed by > X |2 = = I12E|3|5|8|8
) . 2 S
the ticked sym- A <[> S|8c(3|8\» |85 |2 |<
bolsinits row. o} c|lS|SIBISIBI5ISISIEI5|5|5 8 |®

5 clc|g(glg 5 BI8I8 =88
5 = (6|0 T |o c|c o 3 |o|o
+ QoS |Q|0|&E |©|= o O O
EHO%Eﬁ%“B%%EEQE%S%eegan
BB (B .S D 8 |8 |c == |8 |5|8|8|5|6|a[0 |3 |3
start XX - X --[x[x[xx][x]-[x][x[x|x]|x]-]-[x|x]|X
state - - X - XX - - -
stop
input XX - X - [XX XX XXX XXX [X]-|X]|X|X[X
output XX = [X[= [= [XXX X[X[X[X[X]|X]|X]|X]|-]|X|X|X]|X
save
continuous XX - X - [XX XXX XXX XXX - | X|X|-]-
action SUX X =X = [XX XXX XXX X X[X]-]X]|X|X]|X
semaphoretake | - | X | X | - [X |- | - [X[X[X|X|X|X|X[X[X|X[X]|-[X[X]|X]|X
semaphoregive | - [X | X | - [X[-] = [X[X|X|[X[X|X[X|X|X|X[X]-[X|X|X[X
timer start XX - X - [XX XX XXX XXX [X]-|X]|X|X[X
timer stop XX =X = [XXX XXX X[XX X[X]-]X]|X|X]|X
task creation XX - X - [XX XX XXX XXX [X]-|X]|X|X[X
procedurecall | - | X [X |- [X |- |- [X|X[X|X[X|X[X|[X|X|X|X]-|X|X|X]|X
connector out e I I R R A B N T R BT A B B BT A BT A B B A
connector in XX - X - [XX XXX XXX - |- [X]-|X]|X|X[X
transitionoption| - | X | X | - | X |- | - [X[X[X[X|X|X|X|[X]|-[X[X|-|X|X]|X]|X
procedurestart | - [X [X | - [X |- |- [X[X[X[X|X|X[X[X]|-|X|X|-[X]|X]|X]X
procedurereturn| - [- | - | - |- |- |-[-|-|-|-|-|-|[-|-|-|-|-\-|[-1-|-]-
super class XX - X - [XX XX XXX XX |- [X]-|X|X|-][X
transition
super class
next state

The table above should be read row by row. The symbol in the left column can be followed by the
ticked symbols on its row. For example the stop symbol can not be followed by any other symbol.
The state symbol can be followed by input, save, or continuous signal symbols.

Page 38 Specification & Description Language - Real Time

- N TIRT.

5 - Declarations

5.1 - Process
A process is implicitly declared in the architecture of the system (Cf. “Architecture” on page 8)
since the communication channels need to be connected.

aProcess

Process symbol

A process has an initial number of instances at startup and a maximum number of instances. A
process can also be an instance of a process class (Cf. “Object orientation” on page 67), in that
case the name of the class follows the name of the instance after a colon.

The general syntax is:

<process instance name>[:<process class>][(<initial number of instances>, <maximum
number of instances>)] [PRIO <priority>]

The priority isthe one of the target RTOS.
Please note the stack size can be defined in the process or process class additional heading symbol
as described in paragraph “ Additional heading symbol” on page 32.

When a process is an instance of a process class the gates of the process class need to be con-
nected in the architecture diagram. The names of the gates appear in the process symbol with a
black circle representing the connection point.

<process name>:
<process class name>

<gate name

Process class instance

The messages defined in the package going through the gates must be consistent with the mes-
sages listed in the architecture diagram where the process instance is defined.

Specification & Description Language - Real Time Page 39

TIRT

Example:
myProcess
[sig3]
[sig2]
gate2
aProcess:aProcessClass
upperLevelChannel |«g p @ Jatel
[sigOutl] [sigInl]

5.2 - Procedure declaration

An SDL-RT procedure can be defined in any diagram: system, block, or process. It is usually not
connected to the architecture but since it can output messages a channel can be connected to it for
informational purpose.

<return type>

<function names>
({<parameter type>
<parameter names}*);

Procedure declaration symbol

The declaration syntax is the same as a C function. A procedure definition can be done graphi-
cally with SDL-RT or textually in astandard Cfile.

5.2.1 SDL-RT defined procedure

If defined with SDL-RT the calling process context is implicitly given to the procedure. So if a
message output is done, the message will be output from the process calling the procedure. That is
why the message should be defined in one of the channels connected to the process instead of a
channel connected to a procedure. To call such a procedure the procedure call symbol should be
used.

Page 40 Specification & Description Language - Real Time

- N TIRT.

5.2.2 C defined procedure
If defined in C language the process context is not present. To call such a procedure a standard C
statement should be used in a action symbol.

Example:
int
calculateCRC aProcess
(int dataLength,
char *pData) ;
[sig3]
[sig2]
bProcess
upperLevelChannel |4
[sigOutl] [sigInl]
5.3 - Messages

Messages are declared at any architecture level in the additional heading symbol. A message dec-
laration may include one or severa parameters. The parameters data types are declared in C. The

syntax is:
MESSAGE <message name> |[(<parameter type> {,parameter type}*)] {,<message
name> [(<parameter types>)]}*;

It is also possible to declare message lists to make the architecture view more synthetic. Such a
declaration can be made at any architecture level in the additional heading symbol. The syntax is:

MESSAGE LIST <message list name> = <message name> {, <message name>}*{, (<mes-
sage list name>) }*;

The message parameters are not present when defining a message list. A message list can contain
amessage ligt, in that case the included message list name is surrounded by parenthesis.

Specification & Description Language - Real Time Page 41

SDL SDL-RT V2.4

MESSAGE \
| msgl (myStruct *, int, char), \
| msg2 (void) ,

msg3 (void *, short),
| msg4 (int *),
| msg5;
|
MESSAGE_LIST
| myMessageList = msgl, msg2;
MESSAGE_LIST
| anotherMessagelList = (myMessagelList), msg3;

—_—— — —_— —_— —_ —

54-Timers

Thereisno need to declare timers. They are self declared when used in a diagram.

5.5 - Semaphores

Semaphores can be declared at any architectural level. The general syntax in the declaration sym-
bol is:

<semaphore types>
<semaphore name> ({<list of options>[,]}*);
Semaphore declaration
Where the types and options are:
e BINARY <semaphore name> ([PRIO | FIFO], [INITIAL EMPTY | INITIAL FULL])
e MUTEX <semaphore name> ([PRIO | FIFO 1 [, DELETE_SAFE 1 I, INVERSION_ SAFE 1)
e COUNTING <semaphore name> ([PRIO | FIFO], <initial counts>)

It isimportant to note the semaphore isidentified by its name.

Page 42 Specification & Description Language - Real Time

- N TIRT.

6-MSC

SDL-RT integrates the Message Sequence Chart dynamic view. On such a diagram, time flows
from top to bottom. Lifelines represent SDL-RT agents or semaphores and key SDL-RT events
are represented. The diagram put up front the sequence in which the events occur.

In the case of embedded C++ it is possible to use alifeline to represent an object. In that case the
typeis object and the name should be <object names:<class names

6.1 - Agent instance

An agent instance starts with an agent instance head followed by an instance axis and ends with
an instance tail or an instance stop as shown in the diagrams below.

[<type>] [<type>]
<name> <name>

]

Lifeline with an instance Lifeline with an instance
tail symbol stop symbol

The type of the agent can be specified on top of the head symbol and the name of the agent iswrit-
ten in the instance head symbol. The instance tail symbol means the agent lives after the diagram.
The instance stop symbol means the agent no longer exist after the symbol.

When an agent creates another agent a dashed arrow goes from the parent agent to the child agent.

Specification & Description Language - Real Time Page 43

TIRT

process

___________________ > p?ﬁsprl ng

]]

Process pParent creates process pOffspring

6.2 - Semaphore representation

A semaphore representation is made of a semaphore head, alifeline, and a semaphore end or tail.
The symbols are the same as for a process except for the head of the semaphore.

[semaphore] [semaphore]

ﬂ <name> ﬂ <name>

Semaphore with an Semaphore with an
instance tail symbol instance stop symbol

6.3 - Semaphore manipulations

Several cases are to be considered with semaphore manipulations. A process makes an attempt to
take a semaphore, its attempt can be successful or unsuccessful, if successful the semaphore
might still be available (counting semaphore) or become unavailable. During the time the sema-
phore is unavailable, itslifeline gets thicker until it is released.

Page 44 Specification & Description Language - Real Time

SDL-RT V24

TIRT

The manipulation symbols are the following:

<sem name>

Semaphore creation from aknown
Process.

take »{

Semaphore take attempt.

Semaphore take successfull but
semaphoreis still available.

timed out

Semaphore take timed out.

give

Semaphore give. The semaphore
was available before the give.

Semaphoreiskilled by aknown
process.

ﬂ <sem name>

Semaphore creation from an
unknown process.

take

Semaphore take attempt on a
locked semaphore.

Semaphore take successfull and the
semaphore is not available any
more.

Semaphore continues.

give

Semaphore give. The semaphore
was unavailable before the give.

X

Semaphoreiskilled by an
unknown process.

Specification & Description Language - Real Time

Page 45

TIRT

Example:
myProcl myProc2
——————————————— -»ﬂ mySem
take
succeeded
4_ ______________________
take
-t
give
>
succeeded
| Succeeded »
give
-
4_ _________________

Processmyproc1 first creates semaphoremysem, then takesit successfully.
Process myproc2 makes an attempt to take semaphore mysem but gets

blocked on it. Process myproc1 releases the semaphore so myProc2 Suc-

cessfully gets the semaphore. Processmyproc2 givesit back, and killsit.

6.4 - M essage exchange

A message symbol is a simple arrow with its name and optional parameters next to it. The arrow
can be horizontal meaning the message arrived instantly to the receiver or the arrow can go down
to show the message arrived after a certain time or after another event. A message can not go up !
When the sender and the receiver are represented on the diagram the arrow is connected to their
instances. If the sender is missing it is replaced by a white circle, if the receiver is missing it is
replaced by ablack circle.The name of the sender or the receiver can optionally be written next to
thecircle.

Page 46 Specification & Description Language - Real Time

SDL-RT V24 SDL

process block

sender receiver
keypad O—> initMsg

(12, "Hello world\n")

readyMsg

startMsg

run

—»@) engine
L] L]

An external agent called keypad Sends run message to process sender.
Process sender sends initMsg that is considered to be received immedi-
atly to block receiver. Block receiver replies readyMsg, process sender
sends startMsg, and block receiver sends run to an external agent.

A message is considered received by an agent when it is read from the agent’s message queue; not
when it arrives in the message queue !

Specification & Description Language - Real Time Page 47

NTIRT,

msgl

msgl is sent from instance ato

instance b
: msgl msgl I
msgl isreceived from an unknown msgl is sent to an unknown
sender receiver

msgl

[/
[/ _s

msgl issaved and is still in the
save queue

———

saved msgl is now consumed

6.5 - Synchronouscalls

This representation is used when using embedded C++ to show method calls on an object. Object
can be represented by lifelines. Synchronous calls are shown with an arrow to the instance repre-
senting the object. While the object has the focus its lifeline becomes a black rectangle and the
agent lifeline becomes a white rectangle. That means the execution flow has been transferred to
the object. When the method returns a dashed arrow return to the method caller.

Page 48 Specification & Description Language - Real Time

- N TIRT.

process object
key board myPhoneBook:PhoneBook
set URL

("http://www.sdl-rt.org")

Process keyboard cals method set URL from myPhoneBook Object that is
an instance of PhoneBook Class.

6.6 - Sate

A lifeline represents a process and depending on its internal state a process reacts differently to
the same message. It is interesting to represent a process state on its lifeline. It is also interesting
to represent a global state for information. In that case the state symbol covers the concerned
instances. In both cases the same symbol is used.

Sate symbol

Specification & Description Language - Real Time Page 49

SDL SDL-RT V2.4

Example:
process process
[cdle] sve |
idle
R
conReq >

< connected > < connected >
L]]

Process server goesto idle state. Process caller inits start transition
sends a conReq t0 server and goesto state idle. Process server returns
an conConf Message and goesto connected state. When conconf message
isreceived by process caller it SO MOVEStO connected State.

conConf

Page 50 Specification & Description Language - Real Time

- {SDL

6.7-Timers

Two symbols are available for each timer action depending if the beginning and the end of the
timer are connected or not. The timer name is by the cross and timeout value is optional. When
specified the timeout value unit is not specified; it isusually RTOS tick counts.

<timer name> <timer names> <timer name>
[(<timer times>)] [(<timer time>)] [(<timer times>)]

Timer start connected Timer stop unconnected Timeout unconnected

<timer name> <timer name> <timer name>
[(<timer time>)] [(<timer time>)] [(<timer time>)]
Timer start unconnected Timer stop connected Timeout connected

<timer name>
[(<timer time>)]

Timer restart connected

Specification & Description Language - Real Time Page 51

SDL SDL-RT V2.4

Examples:.
process process
caller server
idle
R
conReq >

tConReq
(100)

conConf

tConReq

< connected < connected >
L] []

Process caller triesto initiate connection with conreq message. At the
sametimeit startstimer tconreq S0 that if no answer isreceived it will
retry connecting. If an answer isreceived the timer is cancelled and process
caller gOesto state connected.

Page 52 Specification & Description Language - Real Time

SDL-RT V24

process process
caller server
idle
conReq
|
tConReq
(100)
< connecting
conReq
|

tConReq
(100)

< connecting

ST TTY]

< unconnected

E—

Process caller triesto initiate connection with conreq message. Since it
receives no answer after two triesit gives up and goes to unconnected state.

6.8 - Timeinterval

To specify atime interval between two events the following symbol is used.

<time constraints>

Time constraint syntax is the following:

» absolute timeis expressed with an @ up front the time value,

Specification & Description Language - Real Time

Page 53

{shL

» relativetimeis expressed with nothing up front its value,

e timeinterval isexpressed between sguare brackets,

e timeunit is RTOS specific -usually tick counts- unless specified (s, ms, us).
Noteit is possible to use time constraint on asingle MSC reference.

Absolute time can also be specified with the following symbol:

Examples.
Table 1. Examples of time constraint expressions
Expression Meaning

1.3ms takes 1.3 msto do
[1,3] takes a minimum of 1 to a maximum of 3 time units

should not occur before absolute time 12.4 s and should not finish after abso-

@[12.4s,14.7s] lute time 14.7 s.
<5 takes less than 5 time units
process @348 process
[dle] oooo- -
idle
A -
workReqg >

[0, 0x02FF]

E
Q
-
p
-
B
Q

workResp

Process server reaches state id1e at absolute time 34 Sec.

Process c1ient request process server to compute some work in less than
Ox02FF time units.

Page 54 Specification & Description Language - Real Time

- {SDL

process process

[0,200mS] % < Connecting)

]]

connecting MSC should take less than 200mS.

6.9 - Coregion

Coregion is used whenever the sequence of events does not matter. Events in a coregion can hap-
pen in any order. The coregion symbol replaces the lifeline instance.

R
|
|
|
|
|
|
|

—_

Coregion symbol

Example:

process

controller

stopEngine -

displayInfo -

Process controller
sends stopEngine and displayInfo OF
sendsdisplayInfo and stopEngine.

Specification & Description Language - Real Time Page 55

TIRT

6.10 - M SC reference
MSC reference allows to refer to another MSC. The resulting MSC is smaller and more legible.

< <MSC name> >

M SC reference symbol

A reference concerns the connected instances. An instance is connected if itslifeline disappearsin
the symbol. An instance is hot connected if it goes over the reference symbol.

Page 56 Specification & Description Language - Real Time

SDL-RT V24

SDL

Example:

process

caller

< idle

jprocess
idle
conReq
tConReq
(100)
conConf

< connected

process

ECTa.

K

tConReq

Connecting MSC

N

process

server

]

Connecting >
sendData
|
sendData
|

DataTransfer MSC

]

ThepataTransfer MSC starts with areference to connecting MSC. That
means the scenario described in connecting MSC isto be done before the
rest of the pataTransfer MSC occur.

Specification & Description Language - Real Time

Page 57

TIRT

6.11 - Inline expressions

Inline expressions allow to add semantics to the MSC diagrams. An inline expression is a box
spanning one or more instances, and that can have one or several compartments.

<type>

(compartment 1)

(compartment 2)

Inline expression symbol

Aninline expression can specify:

That the sequence of eventsit containsis optional (inline expression type opt);

That its compartments are mutually exclusive: one and exactly one of them must happen,
but not several (inline expression type ait);

That the eventsin all its compartments happen in parallel (inline expression type par);
That the events within it may happen one or severa times, without optional minimum
and maximum numbers of repeats (inline expression type 1oop);

That the events within it may happen in any order across the instances, while still being
ordered as displayed on a single instance (inline expression type seq);

That the events within it generate an exception, ending the scenario described by the
MSC (inline expression type exc).

An instance not concerned by an inline expression will appear to go behind it. Inline expression
can be nested.

Page 58

Specification & Description Language - Real Time

SDL-RT V24 SDL

Example:
process process process
client server server_threaﬂ
connect
|)
set client
_ >
conngct ok
| —
lOOPJ request
|
altJ answer
-
error
-

The client Process sends a connect message to the server, which sendsthe
set_client Message to the server thread process servi ng the client. The
server_ thread Process sends back the connected message to the ciient.
The ciient can then send any number of 100p Messages to the
server thread (‘loop’ inline expron), which will send back either an
answer MESSage Or an error Message (‘a1t’ inline expression).

6.12 - Text symbol
The text symbol contains data or variable declarations if needed in the MSC.

<any C language declarationss>

Text symbol

6.13 - Comment

Asits name states...

| Free text to
— | comment a con-
|nected symbol.

Comment symbol

Specification & Description Language - Real Time Page 59

TIRT

6.14 - Action

An action symbol contains aset of instructionsin C code. The syntax is the one of C language.

Examples.

* Say hi to your friend *
printf ("Hello world !\n");
for (i=0;i1<MAX;i++)

{
newString[i] = oldStringl[i]

}

unsigned char *fullData, *data;
int length; |

process process

caller server

< Connecting >

sendData
(length, data) >

F_— = — — _
memcpy (| fullData
fullData, pointer points
data, at the end of
length) ; | puffer.

L

]]

DataTransfer MSC

The action symbol contains standard C instructions related to data declarations.

6.15 - Property Sequence Charts (PSC)

SDL-RT integrates the concept of Property Sequence Chart, allowing to create diagrams very
similar to MSC diagrams specifying properties that must be matched by an execution trace. PSC
diagrams are represented in the same way as MSC diagrams, with afew additional concepts, that
are described in the following paragraphs.

Page 60 Specification & Description Language - Real Time

- N TIRT.

6.15.1 Component instance
A component instance in a PSC diagram has the same semantics as an agent instance in a MSC
diagram and is represented the same way, as described in “ Agent instance” on page 43.

6.15.2 Normal, required and fail messages

A normal message is amessage that is part of the necessary events for the property to be checked.
They are part of the ‘cause’ part of the PSC. If any of these are not matched, the property doesn’'t
apply and shouldn’t be checked. Required and failed messages are part of the ‘ consequence’ part
of the PSC. Thefirst one is a message that must occur, and the second one is a message that must
not occur.

Normal, required and fail messages are represented the same way as messages in a MSC as
described in “Message exchange” on page 46. However, the text for the message has an additional
prefix, whichis‘e:’ for normal messages, ‘r:’ for required onesand ‘£:’ for fail ones.

6.15.3 Parallel, alter native and loop oper ator
These operators in PSC diagrams have the same semantics and representation as the correspond-
ing inline expressionsin a MSC diagram, as described in “Inline expressions’ on page 58.

6.15.4 Srict operator

In a PSC diagram, the ordering of the message sends and receives is by default a loose one: the
order shown in the PSC must be the one in the trace, but any event can occur in between in the
trace. The strict operator allows to specify that two events must be found one after the other, with
no other event happening in between. It is represented with a thick line on the instance on which
the events occur:

| <instance> |

The receiving of the normal message ml has to be directly followed by the sending of the
required message m2, or the property won't match. Without the strict operator, m2 could have
been sent after any number of events on the instance.

6.15.5 Relative time constraint
Relative time constraints have the same semantics and representation as time intervals in MSC
diagrams, as described in “Timeinterval” on page 53.

6.15.6 Unwanted/wanted message or chain constraints
PSC diagrams allow to specify constraints on message, giving a condition for them to be matched.
These constraints can be of 3 kinds:

Specification & Description Language - Real Time Page 61

TIRT

* Unwanted message constraints specify a list of messages that must not occur before or
after the message to be matched. If any of the messages in the list happens, the property
does not match.

» Unwanted chain constraints specify a sequence of messages that must not occur as a
whole in the specified order, before or after the message to be matched. If the whole
sequence appears, then the property does not match.

» Wanted chain constraints specify a sequence of messages that must occur as a whole in
the specified order, before or after the message to be matched. If the whole sequence
does not appears, then the property does not match.

A constraint is specified viaa symbol, displayed either near the sending of the message for a con-
straint to match before the message, or near its receiving for a constraint to be matched after the
message. A text describing the messages in the constraint appear under the symbol. Each message
in this text is written with a specific syntax:

<sender instance names>. <message name>. <receliver instance names

The text can also just be a label, with the actual constraint given in a text box associated to the
label:

C Unwanted message constraint:

The message m matches only if none of the

e > messages m1 (from C1 to C2) and m2 (from
{C1lmlC2 C2m2.Cl} C2 to C1) occur before it, since the con-

straint is near its sending.

1

:
:

c2 Unwanted chain constraint:

The message m matches only if al the mes-
=~ sages m1 (from C1 to C2) and m2 (from C2
(C1.m1.C2, C2.m2.C1) to C1) do not occur in this order after it,
since the constraint is near its receiving.

1

il
il

m

Wanted chain constraint (with alabel):
The message m matches only if all the mes-
sages ml (from C1 to C2) and m2 (from C2
to C1) do occur in this order before it, since
the constraint is near its receiving.

1

Rl
il

g: (CL.m1.C2, C2m2.C1)

Page 62 Specification & Description Language - Real Time

SDL-RT V24

TIRT

SDL-RT MSC/PSC diagrams actually introduce a more general unwanted constraint, called an
aternative chain constraint, that combines the features of the unwanted message constraint and of
the unwanted chain constraint:

-

g

]

0: (C1.m1.C2, C2.m2.C1| C1.m3.C2)

Unwanted alternative chain constraint:

The message m matches only if neither the sequence of
messages m1 (from C1 to C2) and m2 (from C2to C1),
not the message m3 (from C1 to C2) occur beforeit.

Note that the syntax is compatible with unwanted chain constraint: as long a no | character is
present in the constraint text, the unwanted alternative chain constraint is the same as the
unwanted chain constraint with the same text.
SDL-RT PSC diagrams also allow to specify constraints between square brackets before or after
the message text. The symbols are then given in atextua form. For example:

e

]

]

[\=> (CLmL.C2, C2m2.C1| CLm3CA m _ |

]

Unwanted alternative chain constraint (before message)

e

e

m [==> (C1.m5.C2 | C2.m6.C1)]

]

]

Wanted chain constraint (after message)

Note that unwanted message constraints cannot be represented textually. However, they might be
specified with the equivalent unwanted alternative chain constraint:

o]

m

]

e >
{C1L.m1.C2, C2m2.C1}

[=\=> (CLm1.c2| c2m2.Cl)] m |

]]]

Specification & Description Language - Real Time

Page 63

TIRT

6.16 - High-level M SC (HM SC)

High level MSC diagram is a synthetic view of how MSCs relate to each other. It is only a few
symbols: start, stop, aternative, parallel, state or condition, and M SC reference.

VA O

Parallel Alternative
MSC reference State or condition

The SDL-RT HMSC starts with the start symbol and ends with the stop symbol. The parallel sym-
bol means the following connected path will be executed in parallel. The Alternative symbol
means one and only one of the connected path is executed. Whenever two paths meet again the
path separator symbol is to be repeated. That means if a paralel symbol is used that creates two
different paths, the parallel symbol should be used when the path merge back.

Symbols are connected with lines or arrowsiif clearer. A symbol is entered by its upper level edge
and leaved by any other edge.

Page 64 Specification & Description Language - Real Time

SDL-RT V24 SDL

Example:

disconnected

(conFailed
conSucceeded

(supervising < dataTransfer)

an
Y

C disconnect)

The system starts in disconnected state. Connection attempts are made,
either the conFailed scenario or the consucceeded scenario is executed. If
conSucceeded IS executed supervising and dataTransfer are executi ng
in parallel. They merge back to disconnect and end the HM SC scenario.

Specification & Description Language - Real Time Page 65

TIRT

7 - Datatypes

The data types, the syntax and the semantic are the ones of ANSI C and C++ languages. In order
to ease readibility in the rest of the document, the expression’ C code’ implicitly means’ ANSI C
and C++ code’. There is no SDL-RT predefined data types at al but just some keywords that
should not be used in the C code. Considering the SDL-RT architecture and concepts surrounding
the C code some important aspects need to be described.

7.1 - Type definitions and headers
Types are declared in the text symbol:

<Any C type declaration >

Types declared in an agent are only visible in the architecture below the agent.

7.2 - Variables

Variables are declared after the type definitions in the same text symbol.

<Any C global variable definition >

<Any C type definition >

Variables declared in an agent are only visible in the architecture below the agent. For example
global variables are to be declared at system level. A variable declared in ablock level is not seen
by an upper level block. Variables declared in an SDL-RT processin atext symbol are local to the
process. They can not be seen or manipulated by any other process.

7.3 - C functions

SDL-RT internal C functions are to be defined through the SDL-RT procedure symbol. An SDL-
RT procedure can be defined graphically in SDL-RT or textually in C. When defined in C the pro-
cedure call symbol should not be used. A standard C statement in an action symbol should be
used.

7.4 - External functions

External C functions can be called from the SDL-RT system. These should be prototyped in the
system or in an external C header. It isup to an SDL-RT tool to gather the right files when compil-
ing and linking.

Page 66 Specification & Description Language - Real Time

- N TIRT.

8 - Object orientation

8.1 - Block class

Defining a block class allows to use the same block several times in the SDL-RT system. The
SDL-RT block does not support any other object oriented features. A block class symbol is a
block symbol with a double frame. It has no channels connected to it.

<block class name>

A block class can be instantiated in a block or system. The syntax in the block symboal is:

<block instance names>:<block class name>

Messages come in and go out of a block class through gates. In the block class diagram gates are
represented out of the block class frame. When a block class is instantiated the gates are con-
nected to the surrounding SDL-RT architecture. The messages listed in the gates are to be consis-
tent with the messages listed in the connected channels.

—————————————————

<block instance names>:
<block class name>

_’_______

<gate name>

Specification & Description Language - Real Time Page 67

SDL SDL-RT V2.4

Example:
myBlockClass
myGate2
cEnv2
o= @ aProcess
[sigOut2] [sigIn2] [sigOut2] [sigIn2]
cEnv3
cInternal
myGatel
o= »@ - bProcess
[sigOut1l, [sigInl] [sigOut1l] [sigInl]
sigOut3]
Definition diagram of myBlockClass block class
mySystem A[me&g&i
message9]
chEnvB
[message7]
o)
chEnvA i blockA:myBlockClass 1 blockB
| I chAB
|- P @ myGatel myGate2 -
[sigOutl, [sigInl] N B [sigIn2] [sigOut2]
sigout3y T - - ---- -~

blockA is an instance of myBlockClass

8.2 - Process class

Defining a process class allows to:
* have severd instances of the same process in different places of the SDL-RT architec-
ture,
* inherit from a process super-class,
» gpeciaizetransitions and states.

Page 68 Specification & Description Language - Real Time

- N TIRT.

A process class symbol is a process symbol with a double frame. It is has no channels connected
toit.

MyProcess

A process class can be instantiated in ablock or a system. The syntax in the process symbol is:
<process instance names>: <process class name>

Messages come in and go out of a process class through gates. In the process class diagram, gates
are represented out of the process class frame. When a process class is instantiated the gates are
connected to the surrounding SDL-RT architecture. The messages listed in the gates are to be con-
sistent with the messages listed in the connected channels. The names of the gates appear in the
process symbol with ablack circle representing the connection point.

Fr—_——_ = = = = = = =

<process name>>:
<process class names>

\
|
|
|
|
|
<gate name> @
)

_———— = = = =

e = o

Since a class is not supposed to know the surrounding architecture, message outputs should not
use the TO_NAME concept. Instead TO_ID, VIA, or TO_ENV should be used.

Specification & Description Language - Real Time Page 69

TIRT

Example:
myProcess

[sig3]

[sig2]
/" gate2 = N
4 \
I |
:aProcess:aProcessclass:
I |
upperLevelChannel |- p @ Jatel I
. . I |
[sigOutl] [sigInl] |)
AN /

SDL-RT transitions, gates and data are the elements that can be redefined when specializing. In
the sub class, the super class to inherit from is defined with the inuer1TS keyword in an addi-
tional heading symbol. There are several ways to specialize a process class depending on what is
defined in the super class.

Page 70 Specification & Description Language - Real Time

SDL-RT V24

TIRT

8.2.1 Adding a transition

If the transition is new in the sub class, it is ssimply added to the super class definition.

myGatel

[msg3]

myGatel

[msg3]

8.2.2 Overload atransition

stable
msg3 <ii msgl <i

(idle > <unstable>

An instance of MyClass

If the element exists in the super class, the new element definition overwrites the one of the super

class,.

Specification & Description Language - Real Time

Page 71

{shL

F— - — — — — — —
int myVar; W INHERITS MySuperClass;N
Lo -
‘I%HHHH" ‘I%HHH!'
msg3 msg3
myvVar = 2; myVar = 3;
myGatel
o - idle unstable
[msg3]
MySuperClass MyClass
int myVar; W
stable
msg3
myVar = 3;
myGatel
o——— >0 unstable
[msg3]

An instance of MyClass

8.2.3 Abstract transition
A class can be defined as abstract with the asstracT keyword. It means the class can not be
instantiated as is; it needs to be specialized. A class can define abstract transitions or abstract

Page 72 Specification & Description Language - Real Time

- {SDL

gates. It means the abstract transition or gate exists but that it is not defined. Such aclassis obvi-
ously abstract and needs to be defined as such.

I— _________ N
INHERITS MyAbstractSuperClass; A
Lo |
stable (stable
ABSTRACT msg3
msg3
myGatel
o———»>0 unstable
[msg3]
MyAbstractSuperClass MyClass

myGatel
o——— >0 unstable
[msg3]

An instance of MyClass

Specification & Description Language - Real Time Page 73

NTIRT,

8.2.4 Reference to the super class

When specializing a class it isimportant to be able to refer to the super class transition and next

state. A typical example is the start transition of a sub class that needs to execute the super class
initialization:

int myVar; 7
‘llii%i%l"
myVar = 2; msg3

MySuperClass
Fr— - - - — = = — = — — —
INHERITS MyAbstractSuperClass;
. e |
int myOtherVar; T
<::T::> ‘IHH%HHI'
msgl
myOtherVar = 7; myOtherVar++;
‘IIIE!II"

MyClass

Page 74 Specification & Description Language - Real Time

SDL-RT V24

SDL

msgl

u

int myVar; |
int myOtherVar;
myvar = 2; msg3
|
myOthervVar = 7; myvVar++;

myOtherVar++;

idle

Oy

An instance of MyClass

Please note the input signature must be the same in the super class and in the sub class including
the variable names. For example if the super class transition is MyMsg(a) where ais an int, the

Specification & Description Language - Real Time

Page 75

{sDL

SDL-RT V2.4

sub class transition must be MyMsg(a) as well. It can not be MyMsg(b) evenif bisalso anint.

int 1i;
char c;

MyMessage
(i,¢)

i++;

L

<'unstable >

Super class

char d;

MyMessage
(i,c)

int J; ’

Correct sub class

MyMessage
(3,c)

/ Incorrect sub class \

The transition signature is inconsistent

Page 76

Specification & Description Language - Real Time

SDL-RT V24 SDL

8.2.5 Example
Here comes an example mixing some object oriented concepts and the resulting object:

int myVar; \I
stable)
msg5 < msg3 ABSTRACT
VIRTUAL msg2
o« myGate2 >Q ‘
myVar = 5; myVar = 2;
myGatel
*o——»0 maint idle
[msg3]
MyA bstractSuperClass

r— - - - — — — — — — ™

INHERITS MyAbstractSuperClass;

Lo o

char myOtherVar; 7

stable
msg3 msg2 msgl
msg4
myGate2 myVar = 3; pyOthervar = ra’; vli myGate2
[msg4] [msg2,
msgl]

MyClass

Specification & Description Language - Real Time Page 77

NTIRT,

int myVar; ’

char myOtherVar;

(stable

myGatel msg5 msg3 msg2 msgl
L
[msg3] ‘ \ \ ‘
vV =3 myOtherVar = ‘a’; msg4
myVar = 5; myVar = 3; y _ ; es myGates
myGate2
ot——— >0 ‘ ‘ ‘ ‘
[msg4] [msg2,
msgl] < maint > <unstable> < idle > < stable >

An instance of MyClass

8.3 - Classdiagram

The SDL-RT class diagram is conform to UML 1.3 class diagram. Normalised stereotypes with
specific graphical symbols are defined to link with SDL graphical representation. All symbols are
briefly explained in the paragraphs below. Detailed information can be found in the OMG UML
v1.3 specification.

8.3.1 Class
A classisthe descriptor for a set of objects with similar structure, behavior, and relationships.

<class name>
<class name>

<attributes>

<operations>

Class symbol with

details suppressed Class symbol full rep-

resentation

A stereotypeis an extension of the UML vocabulary allowing to create specific types of classes.
If present, the stereotype is placed above the class name within guillemets. Alternatively to this
purely textual notation, special symbols may be used in place of the class symbol.

Page 78 Specification & Description Language - Real Time

SDL-RT V24

SDL

<<process>>
<process name>

<operations>

Class stereotyped as a
process

<process name>

\<operatlons> y
Class stereotyped as a
process

Classes are divided in active classes and passive classes. An instance of an active class owns a
thread of control and may initiate control activity. An instance of a passive class holds data, but
does not initiate control. In the class diagram, agents are represented by active classes. Agent type
is defined by the class stereotype. Known stereotypes are: system, block, block class, proc-
ess, and process class. Active classes do not have any attribute. Operations defined for an
active class are incoming or outgoing asynchronous messages. The syntax is:

<message way> <message name> [(<parameter type>)] [{via <gate name>}]

<message way> can be one of the characters:
e 5’ for incoming messages,
» '<’ for outgoing messages.

// \

pPhone

call(int) {via gEnv}
hangUp {via gEnv}
conReq {via gSwitch}
conConf {via gSwitch}
disReq {via gSwitch}
disConf {via gSwitch}

AN AN AN NV V

//

Process class pPhone can receive messages
call and hangUp through gate genv and
SendconReq,conConf,disReq,disConf
through gate gswitch.

'/

Specification & Description Language - Real Time

Page 79

SDL

Pre-defined graphical symbols for stereotyped classes are described below:

<<process class>>
<process class

<operations>

Classstereotyped as
aclass of process

<<process>>
<process name>

<operations>

Classstereotyped as
aprocess

<<block>>
<block name>

<operations>

Classstereotyped as
ablock

<<block class>>
<block name>

<operations>

Classstereotyped as
aclass of block

<<system>>
<system name>

V' “

<process class

‘<operatlons> 4
\ V.

Classstereotyped as
aclass of process

g N

<process name>

\<operations>

Classstereotyped as
aprocess

<block name>

koperations>

Classstereotyped as
ablock

<block name>

koperations>

<operations>

Classstereotyped as
asystem

SDL-RT V2.4

Classstereotyped as
aclass of block

<<system>>
<system name>

koperations>

Classstereotyped as
asystem

Page 80

Specification & Description Language - Real Time

- N TIRT.

8.3.2 Specialisation
Specialisation definesa’isakind of relationship between two classes. The most general classis
called the superclass and the specialised classis called the subclass.

<superclass
name>

Specialisation link

<subclass name>

Subclassisakind of
superclass

The relationship from the subclass to the superclassis called gener alisation.

8.3.3 Association

An association is arelationship between two classes. It enables objects to communicate with each
other. The meaning of an association is defined by its name or the role names of the associated
classes. Cardinality indicates how many objects are connected at the end of the association.

<class A name>

<class A <cardinality>
role names>

<association name>

<class B
role name> <cardinality>

<class B name>

Specification & Description Language - Real Time Page 81

{shL

Telephone

terminal | *
Each Telephone is
connected to one
Switch. A Switch IS
connected to severa
Telephone.
A Telephone IS a
terminal for a
Switch.

is connected to

switch | 1

Switch

Instances of aclass are identified by the associated class viaitsrole name.
In the example above an isntance of switch identifies the instances of Telephone it is connected

toviathe name terminal.

8.3.4 Aggregation
Aggregation definesa’isapart of relationship between two classes.

<container class
names>

<role name>

<role name> <cardinality>

Aggregation link

<contained class
name>

contained classisapart
of container class

Objects identify each other as described for regular associations (Cf. “Association” on page 81).

Page 82 Specification & Description Language - Real Time

- N TIRT.

8.3.5 Composition
Composition is a strict form of aggregation, in which the parts are existence dependent on the
container.

<container class
name>

<role name>

<role name> <cardinality>

Aggregation link

<contained class
name>

contained classisapart
of container class

Objectsidentify each other as described for regular associations (Cf. “Association” on page 81).

8.4 - Package

A package is a separated entity that contains classes, agents or classes of agents. It is referenced
by its name.

]

<package name>

It can contain:
o classes,
* gystems,
* blocks,
» classes of blocks,
* processes,
» classes of processes,
* procedures,
» datadefinitions.

Specification & Description Language - Real Time Page 83

TIRT

8.4.1 Usagein an agent

Agent classes definitions can be gathered in a package. To be able to use classes defined in a
package, an SDL-RT system should explicitly import the package with USE keyword in an addi-
tional heading symbol at system level.

8.4.2 Usagein a class diagram
Classes defined in a package can be referenced in 2 ways:
« prefix the class name with the package name

<package names>::<class name>

<attributes>

<operations>

Class <class names> isdefinedin
package <package name>

» use the package graphica symbol as a container of the class symbol

myPackage ‘

MySuperClass

/\

MyClass

myAttributes

myOperations

MyClass SpeCidiseSMySuperClass
defined in myPackage.

Page 84 Specification & Description Language - Real Time

- N TIRT.

9 - Deployment diagram

The Deployment diagram shows the physical configuration of run-time processing elements of a
distributed system.

9.1 - Node

A nodeisaphysical object that represents a processing resource.

<Node name>

<Node attributes>

9.2 - Component

A component represents a distributable piece of implementation of a system. There are two types
of components:
» Executable component

<Component name>

[::%:::] <Component attributes

* File component

<file name>

Specification & Description Language - Real Time Page 85

NTIRT,

SDL-RT V2.4

9.3 - Connection

A connection is a physical link between two nodes or two executable components. It is defined

by its name and stereotype.

Antenna

<< <stereotype> >>

<connection names

Satellite

Page 86

Specification & Description Language - Real Time

- N TIRT.

9.4 - Dependency

Dependency between elements can be represented graphically.
* A dependency from a node to an executable component means the executable is running
on the node.
* A dependency from a component to a file component means the component needs the
file to be built.
* A dependency from anodeto afile means that all the executable components running on
the node need the file to be built.

MyNode

MyCode.c

MyComponent FUNS 0N MyNode and needsmycode . c fileto
be built.

Specification & Description Language - Real Time Page 87

TIRT

SDL-RT V2.4

9.5 - Aggregation

A node can be subdivided of nodes.

VmeRack

I

NetworkBoard

ControlBoard

vmeRack hode is subdivided of NewtorkBoard and controlBoard

9.6 - Node and componentsidentifiers

Attributes are used by connected nodes or components to identify each other.

NodeA

<<|P>>

myNet

NodeAl
myNet.id=192.168.1.1
T

[:i:] CptAl
[::F:] myNet . 1d=49250

CptB Can connect to cptAl via myNet connection by using NodeAl myNet .id

NodeA2

myNet .1d=192.168.1.2

[:i:] CptA2
[::F:] myNet .id=49251

attribute and cpta1l myNet.id attribute.

Nodes attribute can be omitted if not needed.

NodeB

myNet.1d=192.168.1.12

Y

CptB

[::F:] myNet .id=50000

Page 88

Specification & Description Language - Real Time

SDL-RT V24

SIRT

10 - Symbols contained in diagrams

The table below shows what symbols can be contained in a specific diagram type.

§|S

‘ﬁg 2 k%)

85| 5 2
In the diagrams listed i 3|3 8 5| [€ c|s
in this column the |@ | g o = Ele|®| |58 # ES5 3|5
ticked symbols on the| g, (G 2 ? S2lwls5| & g5 |7 3= 8'§'§ o
i 8)_% X B%C-; © =2z 5 38 o 88’
right can be used. 8188|818 %‘5‘20’0’%@ EBISEc 35

dS gL sl iR BB EsEE5588

package XXX [X[X|X[X|X[X|X|X]|-|-]X]| X |X - X
class diagram X|IX|X|X|X|-|-]-]-]-]-]-]-[%X] X |Xx - X
block class Sl XXX XXX [X[X[X]-]- - - -
process class Sl X XX - X - - - -
block Sl XXX XXX X - X|-]- - -
process - XX -] - X - - - -
procedure R N N N DR N DY - - -
deployment X X

A diagram listed in the first column can contain the ticked symbols in the other columns. For
example the process symbol can contain the additional heading symbol, the text symbol and all
the behavior symbols. The behavior symbols are all symbols described in “Behavior” on page 13.

Specification & Description Language - Real Time

Page 89

SDL SDL-RT V2.4

11 - Textual representation

The storage format for SDL-RT diagrams follows the XML (eXtensible Markup Language stan-
dard from W3C available at http://www.w3.0rg) standard. There are 3 quite different kind of dia-
gramsthat are actually represented differently in the XML.:

e “Standard” diagrams, consisting in symbols that can have links between them, with no
particular structure associated to them. These diagrams include for example system or
block diagrams, deployement diagrams, and so on.

» Behavioral diagrams, which have a specific structure in terms on state blocks and transi-
tions. These diagrams include for example process and procedure diagrams.

* MSC diagrams that have a very specific structure which is very different from all other
diagrams.

The following paragraphs describe how each diagram kind is represented, starting with the XML
definitions that are common to all diagram kinds.

11.1 - Common XML definitions

<!-- Entity for booleans -->

<l-- =================== -->
<!ENTITY % boolean “(TRUE|FALSE)”>
<!-- Entity for language -->
<l-- =================== -->

<!ENTITY % Language “(sdl|sdl-rt|none)”>

<!-- Entities for symbol types -->

<!l-- ========================= -->

<!ENTITY % sdlSymbolTypesl “sdlSysDgmFrm|sdlSysTypeDgmFrm|sd1lBlkDgmFrm|sd1BlkTypeDgmFrm|
sd1BlkType|sdlBlk|sd1BlkTypeInst |sdlPrcsType|sdlPrcs|sdlPrcsTypelnst” >

<!ENTITY % sdlSymbolTypes2 “sdlInherits|sdlPrcsTypeDgmFrm|sdlPrcsDgmFrm|sdlPrcdDgmFrm |
sdlstart|sdlState|sdlInputSig|sdlSendSig|sdlSaveSig|sdlContSig” >

<!ENTITY % sdlSymbolTypes3 “sdlTask|sdlDecision|sdlTransOpt |sdlAnswer |sdlJoin|sdlText |
sdlComment | sd1lTextExt |sdlCnctrOut |sdlCnctrIn|sdlPrcsCreation|sdlStop|sdlobjCre” >

<!ENTITY % sdlSymbolTypes4 “sdlInitTimer|sdlResetTimer|sdlSemDecl |sdlSemTake |sdlSemGive |
sdlPrcdProto|sdlPredDecl | sdlPrcdCall | sdlPrcdStart | sdlPrcdReturn” >

<!ENTITY % sdlSymbolTypes5 “sdlMacroDecl|sdlMacroCall|sdlMacroDgmFrm|sdlMacrolInlet |
sdlMacroOutlet |sdlPrioInputSig|sdlPrioSendSig|sdlCompState” >

<!ENTITY % sdlSymbolTypesé6 “sdlCompStateDef | sdlService|sdlCompStateDgmFrm|sdlServDgmFrm|
sdlSuperTransitionCall|sdlSuperNextstateCall” >

<!ENTITY % sdlSymbolTypes “%$sdlSymbolTypesl; |$sdlSymbolTypes2; | $sdlSymbolTypes3; |

%$sdlSymbolTypes4; | $sd1SymbolTypes5; | $sdlSymbolTypes6;” >

<!ENTITY % hmscSymbolTypes “hmscDgmFrm|hmscParallel |[hmscStart | hmscEnd|hmscCondition|
hmscMscRef |hmscAlternativePoint” >

<!ENTITY % umlClassSymbolTypes “umlClassDgmFrm|umlPckg|umlClass|umlComment |umlSys|umlBlkCls |
umlBlk |umlPrcsCls |umlPres” >

<!ENTITY % umlDeplSymbolTypes “umlDeplDgmFrm|umlNode |umlComp [umlFile” >

<!ENTITY % umlUCSymbolTypes “umlUCDgmFrm|umlUseCase |umlActor” >

Page 90 Specification & Description Language - Real Time

http://www.w3.org
http://www.w3.org
http://www.w3c.org
http://www.w3c.org

SDL-RT V24 DL

<!ENTITY % SymbolType “(%sdlSymbolTypes; |%hmscSymbolTypes; |%umlClassSymbolTypes; |
$umlDeplSymbolTypes; | $umlUCSymbolTypes;) " >

<!-- Entity for connector types -->
<l-- ========================== -->

<!ENTITY % ConnectorType “(void|chnl|chnlgate|sdlarrow|mscvoid|mscgate|mscarrowgate|hmscarrow
umlcvoid|umlassoc|umlrole |umldvoid)” >

<!-- Entity for side for connectors -->

<l-- ============================== -->

<!ENTITY % Side “(n|s|w|e|x|y)”>

<!-- Entity for end types for connectors -->

<l-- =================================== -->

<!ENTITY % ConnectorEndType “(voidend|arrow|midarrow|fullarrow|outltri|outldiam|filldiam|
outldiamarw|filldiamarw)”>

<!-- Entity for link segment orientation -->

<l-- =================================== -->

<!ENTITY % Orientation “(h|v)”>

<!-- Entity for link types -->
<l-- ===================== -->
<!ENTITY % LinkType " (sbvoid|dbvoid|ssvoid|dsvoid|chnl|dec|transopt|msg|meth|rtn|instcre|assoc

spec|aggr|comp | cnx|dep) ” >

<!-- Entity for diagram types -->

P S

<!ENTITY % DiagramType “(sys|systype|blk|blktype|prcs|prcstype|pred|macro|msc|hmsc|mscdoc]|class|
usec |depl |compstate|service|ifobs)”>

<!-- Entity for message parameters visibility -->

<l -- == -->

<!ENTITY % MsgParamVis ™ (no|abbr|full)”>

11.2 - XML elementsfor standard diagrams

11.2.1 Principles
The file describes the whole diagram in terms of symbols, links and connectors. A link is subdi-
vided into link segments. Each of these elements have one or several texts.

Specification & Description Language - Real Time Page 91

SDL SDL-RT V2.4

Hereis an example of this organization with a UML class diagram:

Connector 1
—Text1
Text 2
ClassA <a
r—— 1 «-————F Connector 2
—p-|attributes..
operations.. —a Text2
- name
V ClassB -a
symbd 1 0..*attributes.. -
Text1 A role b operations
1 o0
- Text 2 p
Text3—————
Link 1 Symbol 2
Text | Text 1
Segmentl —— Text2 —!
Segment2 ———— Text 3
Segment 3
11.2.2 XML elements
<!-- Element for text in symbols/links/... -->
<l-- ===================================== -->
<!-- The “hidden” attribute is only used for attributes and operation boxes in UML class diagrams
-->
<!ELEMENT Text (#PCDATA) >
<!ATTLIST Text
id CDATA “o”
hidden %boolean; “FALSE”
>
<!-- Element for symbols -->
<l-- =Z================== -->
<!-- The “Symbol*” component is for contained symbols -->

<!ELEMENT Symbol (Text+, Symbol*)s>
<!ATTLIST Symbol

symbolId ID #REQUIRED
type %$SymbolType; #REQUIRED
xCenter CDATA #REQUIRED
yCenter CDATA #REQUIRED
fixedDimensions %$boolean; “FALSE”
width CDATA “10”
height CDATA “10”
color CDATA “#000000"
fillColor CDATA “HEEEFEEE”

Page 92 Specification & Description Language - Real Time

SDL-RT V24

DL

Element for connectors -->

N
|
|

N

IELEMENT Connector (Text, Text)>
!ATTLIST Connector

A

connectorId CDATA A
attachedSymbolId IDREF #REQUIRED
type %$ConnectorType; #REQUIRED
isOutside $boolean; #REQUIRED
side %$Side; #REQUIRED
position CDATA #REQUIRED
endType %ConnectorEndType; #REQUIRED

>

<!-- Element for link segments -->

<l-- ========================= -->

!ELEMENT LinkSegment EMPTY>

IATTLIST LinkSegment

orientation %Orientation; #REQUIRED
length CDATA #REQUIRED

N

A

!-- Element for links -->

A

IELEMENT Link (Text, Connector, Connector, LinkSegment*) >
IATTLIST Link

A

A

1linkId CDATA ww
type $LinkType; #REQUIRED
textSegmentNum CDATA #REQUIRED
color CDATA “#000000”
reverseRead $boolean; “FALSE"”
>
<!-- Element PageSpecification -->
<l-- ========================= -->
<!-- Attributes for diagram pages; all dimensions are centimetres -->
<!ELEMENT PageSpecification EMPTY>
<!ATTLIST PageSpecification
pageWidth CDATA w21"
pageHeight CDATA “29.7"
topMargin CDATA “1.5”
bottomMargin CDATA “1.5"
leftMargin CDATA “1.5"
rightMargin CDATA “1.5”
pageFooter %$boolean; “TRUE”
scaleFactor CDATA “1.0"
>
<!-- Element DiagramPartition -->
<l-- ======================== -->
<!-- A partition in a diagram -->
<!ELEMENT DiagramPartition (PageSpecification, Symbol, Link*, UnifiedPublication%*) >
<!ATTLIST DiagramPartition
name CDATA w
nbPagesH CDATA wir
nbPagesV CDATA i~

Specification & Description Language - Real Time

Page 93

TIRT

<!-- Element for diagrams -->

S

<!ELEMENT Diagram (DiagramPartition+) >

<!-- Warning: attributes pageWidth, pageHeight, nbPagesH & nbPagesV are obsolete -->
<!ATTLIST Diagram

language %$Language; “none”

type $DiagramType; #REQUIRED

name CDATA we

cellWidthMm CDATA w57

11.2.3 Explanations

The main XML element is <piagrams. It issplit in several partitions, each being arectangular set
of pages having the same page size and margins within a partition (XML element <pagesSpecifi-
cations). A partition aways has an external frame, which isasymbol, containing all the symbols
init. Attributes for asymbol are all the required information to display it. In addition to its display
attributes, a link also knows the index of the segment bearing its text (textSegmentNum) and a
special indicator for association links giving the reading order of the association (reverseRread).
The position for connectors is given by the side of the symbol to which they attach, the relative
position along the symbol’s border and a boolean saying if the connector is outside the symbol
(normal case) or inside it (links connecting to aframe border):

|
-1.0 -0.5 00 1.0 -10 N
] |
RN J— é — E_ — 1
‘ |

' 0.0—-W--——i———E—
: 0.3 !
outside |
inside '
S
10—— -

A connector also has an endType specifying the symbol that appears at the link end, which may
vary for a given connector type (e.g connectors for association links may end with afilled or out-
lined diamond to indication the association is actually a composition or aggregation).

11.3 - Behavioral diagrams

11.3.1 Principles
Behavioral diagrams are not described in terms of symbols with links between them, but in terms
of logical elements:
» State blocks, which are blocks of symbols starting with a state symbol with transitions
attached to it, each starting either with a message input symbol, a continuous signal sym-
bol or a save symbol.

Page 94 Specification & Description Language - Real Time

SDL-RT V24 DL

» “Standalone” transitions, such as the start transition, or a sequence of symbols starting
with alabel. These are also called “non-state transitions’, as they do not appear in a state
block.

» Symbols alone that are not attached to any other, such as declaration symbols.

Some specific constructions are used for state blocks starting on a state symbol that is also a next
state in another transition, and for symbols that are attached to other ones, such as comment sym-
bols.

11.3.2 XML elements

<l-- =================================== -->

<!-- ELEMENTS FOR STATE MACHINE DIAGRAMS -->

<l-- =================================== -->

<!-- Element SdlFSMDiagram -->

<l-= mmvmmmmnvn s -->

<!-- Element for the whole state machine diagram. The symbols are the declaration symbols in the
diagram. -->

<!ELEMENT SdlFSMDiagram (%$SdlFSMPartition*) >

<!-- NB: entities and elements not defined in this file are in rtdsDiagram.dtd, where this DTD is
included -->
<!ATTLIST SdlFSMDiagram
language %$Language; wow
type $DiagramType; “prcs”
>
<!-- Element SdlFSMPartition -->
<l-= mmvmmmmn v - >
<!-- Element for a partition in the state machine diagram. The symbols are the declaration symbols
in the partition. -->

<!ELEMENT SdlFSMPartition (Sdl1FSMSymbol*, (NonStateTransition \ StateTransitionBlock) *,
PageSpecification?) >
<!ATTLIST SdlFSMPartition

name CDATA wn
>
<!-- Element StateTransitionBlock -->
<l-- mmvmmmmn s a s r s s s s s~ == >
<!-- Element for a set of transitions attached to a state symbol. The symbol is the state. -->
<!ELEMENT StateTransitionBlock ((Sd1FSMSymbol|SdlFSMSymbolReference), (SaveTransition]

NormalStateTransition) *) >
<!ATTLIST StateTransitionBlock
top left coordinates CDATA w

<!-- Element SdlFSMSymbolReference -->
B B e e e e e T >
<!-- Element for a reference on a symbol. Used to connect state transition blocks to nextstate

symbols -->

<!ELEMENT SdlFSMSymbolReference EMPTY>
<!ATTLIST SdlFSMSymbolReference
identifier IDREF #REQUIRED

Specification & Description Language - Real Time Page 95

DL SDL-RT V2.4

<!-- Element NonStateTransition -->

<l mvmnmn v -—->

<!-- Element for a transition not attached to a state symbol, such as a start transition or an “in”
connector transition. The symbol is the starting one (start or connector). -->

<!ELEMENT NonStateTransition (Sdl1FSMSymbol, Transition) >
<!ATTLIST StateTransitionBlock
top_ left coordinates CDATA n

<!-- Element NormalStateTransition -->

<o mmmmnm e n v m v n v v v v~~~ -->

<!-- Element for a “normal” transition in a state block, i.e starting with an input or a continuous
signal. The symbol is the input or continuous signal. -->

<!ELEMENT NormalStateTransition (SdlFSMSymbol, Transition) s>

<!-- Element SaveTransition -->
<= v -->
<!-- Element for a transition in a state block that is only a save symbol. The symbol is the save.

-->

<!ELEMENT SaveTransition (SdlFSMSymbol) >

<!-- Element Transition -->

<l mmmmmnvnv v -->

<!-- Element for the behavioral part of a transition (not including the header symbol such as the
input or the start). -->

<!ELEMENT Transition ((Sd1FSMSymbol | DecisionBlock) *) >

<!-- Element DecisionBlock -->

R T R R e e R -->

<!-- Element for a decision block in a transition. The symbol is the decision, or transition
option. -->

<!ELEMENT DecisionBlock (SdlFSMSymbol, DecisionBranch¥*) >

<!-- Element DecisionBranch -->
<l-- mmvmnmn v -->
<!-- Element for a branch in a decision. The symbol is the answer. -->

<!ELEMENT DecisionBranch (SdlFSMSymbol, Transition) >

<!-- Element Sdl1FSMSymbol -->

<l mmmmmncn v n v~ -->

<!-- Element for a single symbol. The default value “-” for the colors means they should use the
default color. --»>

<!ELEMENT SdlFSMSymbol EMPTY>
<!ATTLIST SdlFSMSymbol

identifier ID #REQUIRED
type %$SymbolType; #REQUIRED
text CDATA wn
outline_color CDATA A
background color CDATA N

Page 96 Specification & Description Language - Real Time

- {SDL

center coordinates CDATA
dimensions CDATA
attached symbol id CDATA

>

11.3.3 Explanations
The top-level XML element for a behavioral diagram is <sd1FsMpiagrams. Just as for standard
diagrams, each diagram is split into partitions described viathe <sd1rFsMpartitions element. A
partition has a page specification, just like partitions in standard diagrams, but their contents is
specific:

» Each of the top-level symbols appearing in it (e.g, a declaration symbol) is described via

a <Sd1FsSMSymbols €lement;
» Each state transition block appearing in it is described viaa <stateTransitionBlocks

element;
» Each non-state transition appearing in it (e.g, the start transition) is described viaa <Non -
StateTransition> element.
More precisely, hereiswhat each XML element represents and how it is structured:

® <StateTransitionBlocks>.

-¢—— <SdlFSMSymbol>
Y

+ + <SaveTransition>

<NormalStateTransition>

®* <«NormalStateTransitions.

-¢—— <SdlFSMSymbols>

® <SaveTransitions>.

®* <«NonStateTransitions.

-4—— <SdlFSMSymbols>

Specification & Description Language - Real Time Page 97

TIRT

® <Transitions.

<Sd1FSMSymbol >

-¢—— <DecisionBlock>

-
- <Sdl1FSMSymbol>
- <Sd1FSMSymbol >

® <DecisionBlocks>.

<‘>—<‘— <Sd1FSMSymbol >

<DecisionBranch>

N\

® <DecisionBranchs>.

-¢—— <SdlFSMSymbols>

I

-—— <Transition>

There are no explicit links described for thiskind of diagram: all displayed links are deduced from
the position of the symbols they link.

State transition blocks that start on a next state symbol in atransition will have the <sda1rsmsym-
bols representing the state replaced by a <sdirsMsymbolReferences, With itS identifier
attribute being the identifier for the next state symbol in the other transition. Note that in this case,
the state transition block’s top left coordinates attribute is irrelevant and ignored, since its
position can be computed from its state symbol.

Symbols attached to other ones such as comment symbols will appear as top-level symbols in
their parent partition, but will have their attached symbol id attribute set to the identifier of the
symbol they are attached to. The link is made both ways:. the symbol they are attached to will also
haveitsattached symbol id attribute set to the identifier of the attached symbol.

Page 98 Specification & Description Language - Real Time

SDL-RT V24 DL

11.4 - MSC diagram DTD

11.4.1 Principles

A MSC diagram is described mainly as a series of events happening on lifelines (instances). More

precisely, it has 3 main parts:

The first part gives the sequence of lifelines in the diagram, ordered as they should be

displayed. All lifelines are listed, including collapsed ones.
The second part lists the collapsed lifelines and the lifelines they “ contain”.

The third part gives the events actually happening in the diagram. Each event has a type
and a set of attributes connecting it to lifelines or other events, or giving information

about how it should be displayed.

1142 DTD text

<!ENTITY

<!ENTITY

<!ENTITY

<!ENTITY

<!ENTITY

<!ENTITY

<!ENTITY

<!ENTITY
<!ENTITY

% MscEventTypel "MESSAGE SEND|MESSAGE RECEIVE|MESSAGE SAVE|OPERATION CALL|

OPERATION_RETURN">

% MscEventType2 "TIMER START|TIMER CANCEL|TIMER TIMEOUT|TIME CONSTRAINT START |

TIME_CONSTRAINT_END">

% MscEventType3 "PROCESS CREATION |PROCESS START|PROCESS END">

% MscEventType4 "SEMAPHORE_CREATION‘SEMAPHORE_START‘SEMAPHORE_END‘SEMAPHORE_DELETION">

% MscEventType5 "SEMAPHORE TAKE |SEMAPHORE TAKE SUCCEEDED | SEMAPHORE TAKE TIMEOUT |

SEMAPHORE_GIVE">

% MscEventType6 "SEGMENT START|SEGMENT END|ACTION SYMBOL START |ACTION SYMBOL SPACER |

ACTION_SYMBOL_END">

% MscEventType7 "MSC_REFERENCE START |MSC_REFERENCE END|INLINE EXPRESSION_ START|

INLINE EXPRESSION SEP|INLINE EXPRESSION END|CONDITION START |CONDITION END">

MscEventType8 "TEXT SYMBOL|UNATTACHED COMMENT |ATTACHED COMMENT |ABSOLUTE TIME">
MscEventType " (%MscEventTypel; |$MscEventType2; |%MscEventType3; | $MscEventType4; |

$MscEventType5; | $MscEventType6; | $MscEventType7; | $MscEventType8;) ">

°
3
°

3

<!ELEMENT MscDiagram (LifelineOrdering, CollapsedLifeline*, MscEventRow*, PageSpecification?) >
<!ATTLIST MscDiagram
message params_visibility $%MsgParamVis; "full"

<!ELEMENT LifelineOrdering EMPTY>
<!ATTLIST LifelineOrdering identifiers CDATA "">

<!ELEMENT CollapsedLifeline EMPTY>
<!ATTLIST CollapsedLifeline
identifier CDATA #REQUIRED
collapsed lifelines ids CDATA #REQUIRED

< !ELEMENT MscEventRow (MscEvent+) >

< !ELEMENT MscEvent EMPTY>
<!ATTLIST MscEvent

event_type $MscEventType; #REQUIRED
lifeline_ ids CDATA "
color CDATA "#000000"
background CDATA "HEFFEFEM
identifier CDATA "
type CDATA o
text CDATA "
text_size CDATA nn

Specification & Description Language - Real Time

Page 99

TIRT

11.4.3 Explanations

Themain XML element iS <MscDiagrams.

The first part in the diagram is given in the <Lifelineordering> XML element: its identifiers
attribute contains a space-separated list of lifeline identifiers.

The second part isgiveninthe <colilapsedrifeline> XML elements, each associating an iden-
tifier for the collapsed lifeline to the space-separated list of identifiers for lifelines they contain
(collapsed lifelines ids).

The third part is the sequence of <MmscEvent> XML elements. Each of these elementsis a descrip-
tion of an event happening in the diagram. The attributes for an event are:

event_type: type for the event.

lifeline ids: Space-separated list of identifiersfor lifelinesinvolved in the event.
color: text and outline color for the event.

background: background color for the event if applicable.

identifier: identifier for the event itself if oneis needed. Thisidentifier is used to link
2 related events, such as a couple MESSAGE SEND / MESSAGE RECEIVE Of a couple
TIME CONSTRAINT START /TIME_CONSTRAINT_END.

type: type for object described by the event.

text: text for the object described by the event if any.

text size: Sizefor thetext for the object described by the event, giving itswidth and its
height, separated by a space, both of which canbea’-’ if it'smissing or not significant.

All attributes do not apply to all event types, and may not contain the same inforamtion. Here is
the compatibility matrix:

Table 2: Event attributes

9]
9
- v
| 3 o
(0] - N
Event type = “ o
— 9] IS} |
] 0] =) I8} s}
[—~ [0] Q, » »
- 0] i} ~ Q]
— 0 - i) D D
MESSAGE_SEND | X | X | X X
MESSAGE_RECEIVE | X | X | X X
MESSAGE_SAvE | X | X
OPERATION CALL | X® | X X
OPERATION RETURN | X® | X X
TIMER_START | X | X X
TIMER CANCEL | X | X X
TIMER_TIMEOUT | X | X X
TIME CONSTRAINT START | Xb | X | X X
TIME_CONSTRAINT END | X® | X | X X

Page 100

Specification & Description Language - Real Time

SDL-RT V24

(7€)
I
F

Table 2: Event attributes

n
9
i Y
| o o
Q - N
Event type 5 b o
— 9] IS} |
(0] 0] o] I8} IS}
o — [0} o » x
- (0] e} >~] [0)
— 0] - iS] iS] in)
PROCESS CREATION | X@ | X
PROCESS_START | X | X X | x®
PROCESS END | X1 | X
SEMAPHORE_CREATION | X® | X
SEMAPHORE_START | X | X X
sEMAPHORE_END | X | X
SEMAPHORE_DELETION | X | X
SEMAPHORE_TAKE | X | X X
SEMAPHORE_TAKE_SUCCEEDED | XD | X
SEMAPHORE TAKE TIMEOUT | X | X
SEMAPHORE_GIVE | XD | X
SEGMENT START | XI | X | X | x®
sEGMENT END | X | X | X | X@
ACTION SYMBOL START | X | X X
ACTION SYMBOL SPACER | X1 | X X
ACTION SYMBOL END | X&) | X X
MSC_REFERENCE START | X&) | X | X X
MSC_REFERENCE END | X&) | X | X X
INLINE EXPRESSION START | X® | X | X | x® x(7)
INLINE_EXPRESSTION sep | X® | X | X | x®
INLINE EXPRESSION END | X® | X | X | x®
CONDITION START | X&) | X | X X
conpITION END | X&) | X | X X
TEXT SYMBOL X X

Specification & Description Language - Real Time

Page 101

TIRT

Table 2; Event attributes

[0}
fo}
- G
| 0] [0}
[0} -H N
Event type s 4 °
— 9] IS} |
[0] o = 0] iS) D
[} — Q Q, i w4
- (0] T > [0} [0}
— 9] -H D D D
UNATTACHED_ COMMENT X X
ATTACHED_COMMENT X X
ABSOLUTE_TIME X X

Only onelifelineidentifier is allowed, which is the one on which the event happens.

Two lifelines must be specified. Thefirst isthe one onto which the event happens (called one,
created one, etc...); the second one is the causing the action (caller, creator, etc...).

Severad lifelines can be specified, listing al those spanned by the symbol.

The type is the type for the segment: suspended, method, co-region, etc...

The type isthe type for theinline expression: opt, alt, par, €tC...

The text size only specifies the width for the text, allowing to size the lifeline head correctly.
The text size allows to give the proper dimensions to the tag border in the inline expression.

.

No kW

Page 102 Specification & Description Language - Real Time

- {SDL

Specification & Description Language - Real Time Page 103

DL SDL-RT V2.4

12 - Example systems

12.1 - Ping Pong

/* Rk ik kdokkdokkdkkdkk bk kdkkkkk Rk kk Rk kk Rk kk Rk kk Rk kk Rk kk Rk kk Rk kk Rk kk ke k sk kok
This example system is a basic send and receive test.

First two processes pPing and pPong are created.

pPing receives mStart message from the environment

and the game starts. To slow it down a bit a timer

has been introduced. When pPing receives mStop, the

game stops

ok ok ok ok ok sk ok kb ok sk ok sk ok sk ok sk ok sk ok sk ok sk ok sk R ok sk Rk sk b ok sk R ok sk R ok sk ok sk ok ok ok ok */

[mStart, [1
mStop]
[mPong]
cInternal
[mPing]
pPong

Ping pong system view

Page 104 Specification & Description Language - Real Time

SDL-RT V24 SDL

idle

J

idle mStart

1

mPing TO NAFE pPong >

running

running

mStop

L

mPong < thait

idle

B
T

%t‘dai‘tilﬂ[ﬂﬂ} mPing TO_NAME pPong >

running running

Ping process

N

idle

mPing

4

mPong TO _NAME pPing >

idle

Pong process

Specification & Description Language - Real Time Page 105

SDL SDL-RT V2.4

pPong pPing RTDS _Enw
(Oxdd2ccB) (Oxd427d0) (Dxd42930)

£ idle P

e

mS‘tart,—f’f

/ITIP:LH? running b

Waitt]ﬂﬂﬂ!%

=

w1 ST

/ITIP:LH? running b

MSC trace of the ping pong system

Page 106 Specification & Description Language - Real Time

SDL-RT V24

DL

12.2 - A global variable manipulation

llf* *k

This example shows how to handle a global variable. Both processes
try to modify a global variable in their start transition. To do so
they first take the semaphore preventing concurrent acces to this
global variable.

When they are done they give back the semaphore so that another
process can access the variable.

In this example there are timers in each process so that they keep
the semaphore long encugh to have & conflict while accessing the
global wvariable. Note the glebal variable is defined in an external

C file and resolved at link time.
*Hk *l{

#include "myExtCode.h"

BIMARY mySemaphore (PRIO, INITIAL_FULL)

pProcessh

pProcessB

Global variable manipulation example system

Specification & Description Language - Real Time

Page 107

DL SDL-RT V2.4

@D

mySemaphore | FOREVER)

myGlobalVariable = 5

myTimer [200)

waliting

waiting

myTimer

finished

T 3

O 8 . g l/\lD .
%
>

mySemaphore (FOREVER)

myGlobalVariable = 10;

myTimer [200)

waiting

waiting

myTimer

i 0

mySemaphore

finished

Process B

Page 108 Specification & Description Language - Real Time

SDL-RT V24

SDL

pProcessA pProcessB RTDS_Env mySemaphore
{GxbeZedd) { Bxbe2fad) {Bxbe30bE) { Bxbel7bE)
T
take(FOREVER)
< succeeded
%mﬂimer(mﬁ:
£ walting S
take(FOREVER)
‘Xmﬂimer
give
< finished b
< succeeded
%my‘rimer(200)
£ walting G
%mﬂimer
give
finished o

MSC trace of the global variable manipulation

Specification & Description Language - Real Time

Page 109

TIRT

12.3 - Access Control System

This system controls the access to a building. To get in, one need to insert a card and type a code.
The database is in the central block. When starting the system there is no user registered in the
base so the first user needs to be the administrator.

12.3.1 Requirements
®
(mRegisterUser) (mCardAndCodeDk) (mCard0rCodeko) mbeletellser
@

Either one of the MSCs can be executed indefinitly

Env ACS

T T
miisplay("Enter card")

mCard{"UserCardl")
miisplay("Enter code")
i
mkey('1') !
i
<1051
mKey('2') :
!
!
mkey('3') g']
mbisplay("Please wait")
%‘moor
mOpen
mpisplay("Door open")
‘X’moor
mClose

Sandard scenario

Page 110 Specification & Description Language - Real Time

SDL-RT V24 DL

Enw ACS

T T
miisplay ("Enter card")

mCard("UserCardl")

miisplay ("Enter code")

A

mKey('6")

<10s
mey("6)

mey(6") ____g';

mD;’ splay("Please wait")

mbisplay("Access refused")

Sandard refusal scenario

12.3.2 Analysis

’ ~iipCentral Y

UserFactory
= mCardAndCode()
= mAddUser()
> mDeletelser () ‘ﬂ

o 1 ==create==()
= mAdministrator() getUser(cardld : char*, code : char*) : User*
= mEmployee() newUser{cardld : char*, code : char*) : User*
< mIntruder()
= mOk() 1|creator
= mKof)
N— ¥
1..*%users
User

isAdministrater : short {frozen}
- cardld @ char¥
- code @ char*

==create==(cardld : char*, code : char®*, isAdmin : short)
matches|cardld : char*, code : char*) : short
del ()

The class diagram shows the relation between pCentral (task) active class and UserFactory and
User passive classes (C++)

Specification & Description Language - Real Time Page 111

DL

SDL-RT V2.4

12.3.3 Architecture

llf* *
Access control system.

This system controls the access to a building. To get in, one
need to insert a card and type & code. The database is in the
central block. When starting the system there is no user
registered in the base so the first user needs to be the
administrator.

MES SAGE
mCardAndCode (tCardAndCode*) ,
mAddUser { tCardAndCode*) ,
mDeletelser | tCardAndCode*) ;
MESSAGE mAdministrator, mEmployee, mIntruder, mOk, mKo
MESSAGE mOpen, mClose, mDisplay ;
MESSAGE mCard(int, char*), mKey(char):

#include “common.h"

#include "MyConst.h"
pCentral

[mCardAndCode,
mAddUser,
mbeletelser]

cInternal

[mAdministrator,
mEmployee,
mintruder,

mik,

mKo]

plocal

The system is made of two tasks: pCentral and pLocal

12.3.4 pCentral process

User *Foundlser;
tCardAndCode *pCardAndCode ; wvoid getCardNCode [tCardAndCode* pData, char* card, char*code)
char cardld[16], code[16]:

@0

userFactory :

UserFactory ()

Page 112

Specification & Description Language - Real Time

SDL-RT V24

DL

idle

mAddUser [pCardAndCode) <

getCardiCode (pCardAndCode, cardld, code)

userFactory-=newlser (cardld, code):;
RTDS_FREE | pCardAndCode | :

mOk TO IO SENDER %

idle

mCardAndCode (pCardAndCode) <

getCardiCode (pCardAndCode, cardld, code)

foundUser = userFactory-=getUser (cardId, code);
RTDS_FREE (pCardAndCode | ;

(NULL) (else)
mIntruder TO ID SENDER > @
(true)

()

mAdminis trator TO ID SENDER >

mEmployee TO ID SENDER >

Specification & Description Language - Real Time

Page 113

DL

SDL-RT V2.4

idle

mbeleteUser(plardAndCode | <

getCardiCode (pCardAndCode, cardld, code)

foundUser = userFactory-=getUser(cardld, code);

RTD5_FREE | pCardAndCode) ;

@
(NULL)

()

mko TO_ID SENDER>

foundUser-=del |] ;

(=]

mOk TOID SENDER>

12.3.5 getCardNCode procedure

D

strncpy (card, pData-=cardld, pData-=cardlLength);

card[pbata-=cardLength] = "\0';

strncpy [code, pData-=codeld, pbata-=codelength)

code [plata-=codelength] = '\0';

&

Page 114

Specification & Description Language - Real Time

SDL-RT V24 DL

12.3.6 pL ocal process

char *pCardld, *pCodeld, pkey :
int lengthCardld, lengthCodeId, lenMsg,lengthKey :

tCardAndCode *pCardAndCode :
short mode ;

void DisplayStar (short numChar)

void Display (char *msg)

|) idle

mCard (lengthCardId, pCardld) <

Display (msgEnterCard)

mode=NORMAL ; Display (msgEnterCode)

% tCode (1600)

pCodeld = (char *)RTDS_MALLOC({CODE SIZE):
lengthCodeld = 0;

Specification & Description Language - Real Time Page 115

DL

SDL-RT V2.4

*(pCodeld+lengthCodeld) = pKey :
lengthCodeTIck+ |

engthCodel
(: CODE_SIZE)

(=)

DisplayStar(lengthlodeld) H

| splay (msgPleaseWait)

lenMsg = sizeof(tCardAndCode)

pCardAndCode = (tCardAndCode *) RTDS_MALLOC (lenMsg) :
pCardAndCode-=cardLength = lengthCardIld:
pCardAndCode-=cardId = pCardld ;
pCardAndCode-=>codelength = lengthCodeld:
pCardAndCode-=codeId = pCodeld :

(=)

nCardAndCode (pCardAndCode |
TO_NAME pCentral

(ADD_USER)

mAddllser | pCardAndCode |
TO_NAME pCentral

(DELETE_USER)

mheletellser(pCardindCode |
TO_NAME pCentral

Display (msgEnterCard

Page 116

Specification & Description Language - Real Time

SDL-RT V24 DL

admin Mode

mkey | pKey |

ol

pley
(ADD_USER_KEY) (DELETE_USER_KEY) (else)
mode = ADD_USER ; mode = DELETE_USER ; mode = NORMAL ;

Display (msgEnterNewCard) Display (msgEnterCardTobelete)

@

Display (msgDoorOpen)

mOpen TO_ENV

tDoor (1008)

:

waltCentral

mEmpl oyee < mAdminis trator < mIntruder |:
Display (msgAdmin) Display | msgInvalidCardOrCode)
% thisplay (300)

!

waitCentral :|

mik mko

Display (msgOk) Display (msgKo)

% thisplay (380) * t0isplay (300)
(displaying > (displaying >

Specification & Description Language - Real Time Page 117

DL SDL-RT V2.4

displaying

thisplay

il |

mode = NORMAL ;

Display(msgEnterCard)

doo rlpen

thoor

]

mClose TO _ENV

Display(msgEnterCard)

mode=HNORMAL ;

Page 118 Specification & Description Language - Real Time

SDL-RT V24

DL

12.3.7 Display procedure

#include "string.h"
char *pMsg:
int lenMsg:

12.3.8 DisplayStar procedure

#include "string.h"
char *pMsg:
short i}

d.D

lenMsg = strlen (msg)
pMsg = (char*)RTDS MALLOC(lenMsg)
strcpy(pMsg, msg) ;

mbisplay (lenMsa, pMeg) TO ENV >

&

D

pfeg = (char*)RTDS MALLOC(numChar) ;
for (3i=0;iznumChar ;i)
pMeg[i] = '*';

mbisplay (numChar, pMsg) TU_EM\!’>

&

Specification & Description Language - Real Time

Page 119

SDL SDL-RT V2.4

12.3.9 Deployment

Underground ByTheloor
==]P== hlet

bMet.id='192.168.1.1" bNet.id='192.168.2.49"

pCentral

bhet. id=50000

bNet. id=50000

The components communicate through |P

Page 120 Specification & Description Language - Real Time

- N TIRT.

13 - Differenceswith classical SDL

It isdifficult to list al the differences between SDL-RT and SDL even though an SDL devel oper
would understand SDL-RT and vice versa. Still to be able to clearly state the differences between
these languages we will pinpoint the main differences in the paragraphs below.

13.1 - Datatypes

Thisisthe most significant difference between SDL and SDL-RT. Classical SDL hasits own data
types and syntax where SDL-RT basically uses ANSI C language. Some symbols have a specific
syntax with SDL-RT since there is no C equivaent instruction such as output, input, save, or
semaphore manipulations.
The advantages are obvious:

» the syntax isknown by all real time developers,

* itimplicitly introduces the concept of pointers that does not exist in SDL,

* it easesintegration of legacy code where it is quite tricky to do from classical SDL,

» and last but not least it makes code generation out of SDL-RT quite straightforward.

13.2 - Semaphores

Semaphore is a key concept in real time systems that classical SDL misses. Specific semaphore
symbols have been introduced in SDL-RT to answer the real time developer needs.

13.3 - Inputs

Classical SDL has nice concepts when it comes to dealing with message exchanges. But these
concepts are not so interesting in real time development and are quite tricky to implement on a
real target or operating system. That is why SDL-RT has removed the following concepts:
enabling conditions when receiving a message, internal messages, two levels priority messages.

13.4 - Names

Classical SDL uses exotic names for some well known concepts such as "signal” whereiit is basi-
cally related to a "message”. Since "message” is the usual name in Real Time Operating Systems
SDL-RT uses the same term.

When it comes to object orientation classical SDL talks about "type" instead of the usual "class’
term. SDL-RT uses the common developer word "class'.

13.5 - Object orientation

Classical SDL uses "virtua", "redefined”, and "finalized" when it comes to object oriented con-
cepts. For example a super class should specify a transition is "virtual" so that the sub class is

Specification & Description Language - Real Time Page 121

TIRT

allowed "redefine" or "finalize" it. Thisis C++ like but actually quite painful when it comes to

write and does not make things any clearer. SDL-RT takes the Java notation instead where thereis
no need to specify anything to be able to redefine it in asub class.

Page 122 Specification & Description Language - Real Time

- N TIRT.

14 - Memory management

Real time systems need to exchange information. The best way to do so is to have a reserved
chunk of shared memory that several tasks can access. SDL-RT implicitly runs on such an under-
lying architecture since it supports global variables and exchanges message parameters through
pointers. That raises memory management rules to follow to ensure a proper design.

14.1 - Global variables

SDL-RT processes can share global variables. Thisisvery powerful but also very dangerous since
the data can be corrupted if manipulated without caution. It is strongly recommended to use sema-
phores to access global variables to be sure data is consistent. An example of such a design is
given later in this document.

14.2 - M essage parameters

Parameters of a message are passed through a pointer. Thisimplies the data pointed by the send-
ing process will be accessible by the receiving process. Therefore a good design should meet the
following rules:
» Sending processes allocate specific memory areas to store parameters,
* Once the message is sent the parameter memory area should never be manipulated again
by the sending process,
» Receiver processes are responsible for freeing memory containing message parameters.

Specification & Description Language - Real Time Page 123

SDL SDL-RT V2.4

15 - Keywords

The following keyword have a meaning at in some specific SDL-RT symbols listed below:

keywords concerned symbols

Task definition
PRIO Task creation
Continuous signal

TO_NAME
TO_ID
TO_ENV Message output
VIA

TO ALL

FOREVER

semaphore manipulation
NO WAIT

true, false, decision branches

USE

MESSAGE
MESSAGE LIST
STACK

additional heading symbol

Table 3: Keywordsin symbols

Page 124 Specification & Description Language - Real Time

- N TIRT.

16 - Syntax

All SDL-RT names must be a combination of aphabetical characters, numerical characters, and
underscores. No other symbols are allowed.

Examples:

myProcessName

my_ procedure name
block_1
__semaphoreName

Specification & Description Language - Real Time Page 125

TIRT

17 - Naming convention

Since some SDL-RT concepts can be reached through their names (processes, semaphores) each
name in the system must be unique. This will make the design more legible and ease the support
of SDL-RT in atool.

It is suggested to use the following convention for names:

block names should start with b’

process names should start with’'p’,

timer names should start with 't’,

semaphore names should start with'’'s’,

global variables should start with'g’.

Page 126 Specification & Description Language - Real Time

- N TIRT.

18 - Lexical rules

A subset of the BNF (Backus-Naur Form) is used in these pages :
<traditional English expression> asit says...

[<stuff>] stuff is optional
{<stuff>}+ stuff is present at least one or more times
{<stuff>}* stuff is present O or more times

Specification & Description Language - Real Time Page 127

TIRT

19 - Glossary

ANS| American National Standards Institute
BNF Backus-Naur Form

ITU International Telecommunication Union
MSC M essage Sequence Chart

OMG Object Management Group

RTOS Real Time Operating System

SDL Specification and Description Language
SDL-RT Specification and Description Language - Real Time
UML Unified Modeling Language

XML eXtensible Markup Language

Page 128 Specification & Description Language - Real Time

http://www.ansi.org
http://www.itu.int
http://www.omg.org
http://www.sdl-forum.org
http://www.sdl-rt.org
http://www.uml.org
http://www.w3.org

- N TIRT.

20 -

20.1 -

M odifications from previousreleases

V10toV11l

Semaphore manipulation:
The semaphore take now returns a status that indicates if the take attempt timed out or
was successfull. The semaphore lifeline gets grayed when the semaphore is unavailable.

20.2-V11toV12

Object orientation:

There has been an error in the object orientation chapter: it is not possible to declare a

process class or ablock classin ablock class definition diagram.

Messages:

» Messages now needs to be declared.

» Message parameters are now typed with C types.

» Parameter length can be omited if the parameter is structured. Then the length is
implicitly the sizeof the parameter type.

» The VIA concept has been introduced.

MSC:

Saved messages representation introduced.

20.3-V12toV20

Object orientation:

* UML class diagram has been introduced

* UML deployment diagram has been introduced

» Object creation symbol introduced in the behavior diagram

Tasks:

STACK parameter has been added as a parameter when creating a task.
Organisation:

Chapters have been re-organized.

204-V20toV21l

Messages.
M essages can have multiple parameters. Declaration, inputs, and outputs have changed.

20.5-V21toV22

Object orientation:
» Super class transition symbol added
* Super class next state symbol added

Specification & Description Language - Real Time Page 129

TIRT

* New concepts:
“Composite state” has been introduced.

20.6-V22toV23

e MSC:
* Inline expressions support added.

» Property Sequence Charts (PSC) support added.
e Changein MSC diagram DTD for textual representation.

20.7-V23toV24

* Messages:
Broadcast introduced.
« Textual representation:
New representation for behavioral diagrams.

Page 130 Specification & Description Language - Real Time

SDL-RT V2.4
21 - Index
A Component instance
PSC 61
Action Composition 83
symbol 25 Connection 86
Action symbol Connectors 28
MSC symbol 60 Constraints
Additional heading symbol 32 PSC 61
Agents 8 Continuous signal 24
Aggr egation Cor egl on 55
class 82 creation
node 88 task 27
alt
Inline expression 58
Alternative operator D
PSC 61
Association 81
Data type
difference with classical SDL 121
Data types 66
B Decision 25
Declaration
Block message 41
class 67 procedure 40
BROADCAST 22 process 39
semaphore 42
timer 42
variables 32
C Dependency 87
Diagram
call architecture 8
procedure 28 behavior 13
Cardinality 81 class 78
channels 10 communication 10
Class contained symbols 89
active 79 deployment 85
block 67 MSC 43
definition 78 Distributed system 85
passive 79
process 68
Comment 30
MSC symbol 59

Component 85

Specification & Description Language - Real Time

Page 131

TIRT

SDL-RT V2.4
E opt 58
par 58
else seq 58
decision 26 I nput
keyword 124 difference with classical SDL 121
Environment ~ Mmessage 15
definition 8 instance
message output 18 MSC 43
exc
Inline expression 58
Extension 31
K
Keywords 124
F
false L
decision 26
keyword 124 ,
transition option 29 :_exmal rules127
FOREVER OOI:I)nl ine expression 58
k 124 &5
eyword L oop operator
PSC 61
G
Generalisation 81 M
give
Memory
semaphore 27 management 123
MESSAGE
keyword 124
H M essage
broadcast 21
HM SC 64 communication principles 10
declaration 41
input 15
list 41
| memory management 123
MSC 46
if 25 output 16
ifdef 29 parameters 123
Inline expression 58 PSC 61
at 58 save 23
exc 58 MESSAGE_LIST
loop 58 keyword 124

Page 132

Specification & Description Language - Real Time

SDL-RT V2.4
MSC 43 keyword 124
action 60 Procedure
agent instance 43 call 28
comment 59 declaration 40
reference 56 return 32
semaphore 44 start 31
text symbol 59 Process
behavior 13
class 68
declaration 39
N priority 39
Property Sequence Chart 60
Naming PSC 60
convention 126 Alternative operator 61
difference with classical SDL 121 Component instance 61
syntax 125 Constraints 61
NO_WAIT L oop operator 61
keyword 124 M essage 61
Node 85 Operators 61
Parallel operator 61
Relative time constraint 61
O Strict operator 61
Unwanted chain constraint 61
Object Unwanted message constraint 61
difference with classical SDL 121 Wanted chain constraint 61
OFFSPRING
procedure 28
Operators R
PSC 61
opt reference
Inline expression 58 MSC 56
output 16 Relative time constraint
PSC 61
return
P procedure 32
Package 83
par S
Inline expression 58
Parallel operator save 23
PSC 61 SDL-RT
PARENT Lexical rules 127
procedure 28 Semaphore
PRIO declaration 42

continuous signal 24

Specification & Description Language - Real Time

Page 133

TIRT

SDL-RT V2.4

difference with classical SDL 121

give 27

global variable 123

MSC 44

take 26
SENDER

procedure 28
Seq

Inline expression 58
Specialisation 81
STACK

keyword 124
Stack

size definition 33
Start

procedure 31

symbol 13

timer 27
State 13

MSC 49

Super class 34
Stereotype 78
Stop

symbol 14

timer 27
Storage format 90
Strict operator

PSC 61
Super class

state 34

transition 34
Symbol

additional heading 32

in diagram 89

ordering 33

text 32
Synchronous calls

MSC 48
System 8

T

take
semaphore 26

Task
creation symbol 27
Text
MSC symbol 59
symbol 32
Timeinterval
MSC 53
Timer
declaration 42
MSC 51
start 27
stop 27
TO_ALL 22
keyword 124
TO_ENV 18
keyword 124
TO_ID 17
keyword 124
TO_NAME 18
keyword 124
Transition
Super class 34
Transition option 29
true
decision 26
keyword 124
transition option 29

U

Unwanted chain constraint
PSC 61

Unwanted message constraint
PSC 61

USE
keyword 124

V

VIA 19
keyword 124

Page 134

Specification & Description Language - Real Time

SDL-RT V24

SIRT

W

Wanted chain constr aint
PSC 61

X

XML
data storage 90

Specification & Description Language - Real Time

Page 135

	1 - Introduction
	2 - Architecture
	2.1 - System
	2.2 - Agents

	3 - Communication
	4 - Behavior
	4.1 - Start
	4.2 - State
	4.3 - Stop
	4.4 - Message input
	4.5 - Message output
	4.5.1 To a queue Id
	4.5.2 To a process name
	4.5.3 To the environment
	4.5.4 Via a channel or a gate
	4.5.5 As a broadcast

	4.6 - Message save
	4.7 - Continuous signal
	4.8 - Action
	4.9 - Decision
	4.10 - Semaphore take
	4.11 - Semaphore give
	4.12 - Timer start
	4.13 - Timer stop
	4.14 - Task creation
	4.15 - Procedure call
	4.16 - Connectors
	4.17 - Transition option
	4.18 - Comment
	4.19 - Extension
	4.20 - Procedure start
	4.21 - Procedure return
	4.22 - Text symbol
	4.23 - Additional heading symbol
	4.24 - Object creation symbol
	4.25 - Super class transition symbol
	4.26 - Super class next state symbol
	4.27 - Composite state
	4.27.1 Composite state definition
	4.27.2 Composite state usage

	4.28 - Symbols ordering

	5 - Declarations
	5.1 - Process
	5.2 - Procedure declaration
	5.2.1 SDL-RT defined procedure
	5.2.2 C defined procedure

	5.3 - Messages
	5.4 - Timers
	5.5 - Semaphores

	6 - MSC
	6.1 - Agent instance
	6.2 - Semaphore representation
	6.3 - Semaphore manipulations
	6.4 - Message exchange
	6.5 - Synchronous calls
	6.6 - State
	6.7 - Timers
	6.8 - Time interval
	6.9 - Coregion
	6.10 - MSC reference
	6.11 - Inline expressions
	6.12 - Text symbol
	6.13 - Comment
	6.14 - Action
	6.15 - Property Sequence Charts (PSC)
	6.15.1 Component instance
	6.15.2 Normal, required and fail messages
	6.15.3 Parallel, alternative and loop operator
	6.15.4 Strict operator
	6.15.5 Relative time constraint
	6.15.6 Unwanted/wanted message or chain constraints

	6.16 - High-level MSC (HMSC)

	7 - Data types
	7.1 - Type definitions and headers
	7.2 - Variables
	7.3 - C functions
	7.4 - External functions

	8 - Object orientation
	8.1 - Block class
	8.2 - Process class
	8.2.1 Adding a transition
	8.2.2 Overload a transition
	8.2.3 Abstract transition
	8.2.4 Reference to the super class
	8.2.5 Example

	8.3 - Class diagram
	8.3.1 Class
	8.3.2 Specialisation
	8.3.3 Association
	8.3.4 Aggregation
	8.3.5 Composition

	8.4 - Package
	8.4.1 Usage in an agent
	8.4.2 Usage in a class diagram

	9 - Deployment diagram
	9.1 - Node
	9.2 - Component
	9.3 - Connection
	9.4 - Dependency
	9.5 - Aggregation
	9.6 - Node and components identifiers

	10 - Symbols contained in diagrams
	11 - Textual representation
	11.1 - Common XML definitions
	11.2 - XML elements for standard diagrams
	11.2.1 Principles
	11.2.2 XML elements
	11.2.3 Explanations

	11.3 - Behavioral diagrams
	11.3.1 Principles
	11.3.2 XML elements
	11.3.3 Explanations

	11.4 - MSC diagram DTD
	11.4.1 Principles
	11.4.2 DTD text
	11.4.3 Explanations

	12 - Example systems
	12.1 - Ping Pong
	12.2 - A global variable manipulation
	12.3 - Access Control System
	12.3.1 Requirements
	12.3.2 Analysis
	12.3.3 Architecture
	12.3.4 pCentral process
	12.3.5 getCardNCode procedure
	12.3.6 pLocal process
	12.3.7 Display procedure
	12.3.8 DisplayStar procedure
	12.3.9 Deployment

	13 - Differences with classical SDL
	13.1 - Data types
	13.2 - Semaphores
	13.3 - Inputs
	13.4 - Names
	13.5 - Object orientation

	14 - Memory management
	14.1 - Global variables
	14.2 - Message parameters

	15 - Keywords
	16 - Syntax
	17 - Naming convention
	18 - Lexical rules
	19 - Glossary
	20 - Modifications from previous releases
	20.1 - V1.0 to V1.1
	20.2 - V1.1 to V1.2
	20.3 - V1.2 to V2.0
	20.4 - V2.0 to V2.1
	20.5 - V2.1 to V2.2
	20.6 - V2.2 to V2.3
	20.7 - V2.3 to V2.4

	21 - Index

